

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 64 (2008) 3837-3858

www.elsevier.com/locate/tet

Simple construction of fused and spiro nitrogen/sulfur containing heterocycles by addition of thioamides or thioureas on cycloalkenyl-diazenes: examples of click chemistry

Orazio A. Attanasi^a, Lucia De Crescentini^a, Gianfranco Favi^a, Paolino Filippone^a, Gianluca Giorgi^b, Fabio Mantellini^{a,*}, Francesca R. Perrulli^a, Domenico Spinelli^c

^a Istituto di Chimica Organica, Università degli Studi di Urbino 'Carlo Bo', Via I Maggetti 24, 61029 Urbino, Italy
 ^b Dipartimento di Chimica, Università degli Studi di Siena, Via Aldo Moro, 53100 Siena, Italy
 ^c Dipartimento di Chimica Organica 'A. Mangini', Università di Bologna, Via San Giacomo 11, 40126 Bologna, Italy

Received 2 October 2007; received in revised form 17 December 2007; accepted 25 January 2008 Available online 31 January 2008

Abstract

New 1-cycloalkenyl-1-diazenes have been obtained in good yields from cyclic β -ketoesters and hydrazine derivatives. They furnished new cycloalkyl[*d*][1,3]thiazolines with thioamides or new spirocycloalkyl-thiazolinones with thioureas. Moreover they gave, with imidazolidine-2-thione and tetrahydropyrimidine-2-thione, new and interesting spiro[cycloalkyl-1,2'-imidazo[2,1-*b*][1,3]thiazole] or spiro[cycloalkyl-1,2'-[1,3]thiazolo[3,2-*a*]pyrimidine] derivatives, respectively. Cycloalkyl[*d*][1,3]thiazolines were useful for the further preparation of unknown thia-triaza-tricyclo derivatives. Novel hexahydro-1,3-benzothiazoles have been achieved by reaction of *N*,*N*'-dialkylthioureas on *N*-1-phenyl-2-(1-cyclohexenyl)-1-diazene-1-carboxyamide. The acidic hydrolysis of spirocycloalkyl-thiazolinones produced 2-imino-5-(ω -carboxyalkyl)-4-thiazolidinones.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Thiazoline derivatives represent a family of compounds with great industrial interest, which have found applications in food and flavour chemistry.^{1,2} Thiazolines have also attracted very significant biochemical interest, owing to the presence of the thiazoline moiety in the structures of several naturally occurring molecules with important pharmacological properties such as antibiotic,³ antihelmintic,⁴ antifungal,^{3a} or antitumour drugs.⁵ Recently, new metabolites derived from aminoacids containing thiazole rings have been isolated from marine species: they exhibit antineoplastic and cytotoxic activity.⁶ The aminothiazole system has found applications in drug development for the treatment of allergies, hypertension, inflammation, schizophrenia, bacterial and HIV infections.⁷

Based on these properties, it can be reasonably supposed that the development of synthetic strategies for new cycloalkyl[d][1,3]thiazolines, spirocycloalkyl-thiazolinones, spirocycloalkane-1,2'-imidazo[2,1-b][1,3]thiazoles, spirocycloalkane-1,2'-[1,3]thiazolo[3,2-a]pyrimidines might provide additional lead molecules for drug discovery. Usually, the synthesis of the thiazole core involves the condensation of aminothiols with either nitrile,⁸ carboxylic acid,⁹ or ester,¹⁰ as well as by intramolecular dehydration of β -hydroxythioamides under Mitsunobu conditions,¹¹ or with Burgess reagent.¹² Other methods exploit intramolecular cyclization of β-hydroxyamides with $P_2S_5^{13}$ or Lawesson's reagent,¹⁴ by the reaction of amino sugar derivatives with aryl isothiocyanates,¹⁵ or by deselenylation of thioamido selenides.¹⁶ We previously reported the synthesis of substituted 2-thiazolin-4-ones III^{17} and 5,5-disubstituted 3-alkyl-2-(alkylimino)-thiazolidin-4ones \mathbf{VI}^{18} from 1,2-diaza-1,3-butadienes I and thioamides II or thioureas IV, respectively (Scheme 1).

^{*} Corresponding author. Tel.: +39 0722 303445; fax: +39 0722 303441. *E-mail address:* fabio.mantellini@uniurb.it (F. Mantellini).

More recently,¹⁹ we observed a different regioselectivity leading to new cycloalkyl-thiazolines when this synthetic methodology was applied to cyclopentenyl- or cyclohexenyl-1-diazenes. Herein, we enlarge the scope of previous syntheses by using new cycloheptenyl- and cyclooctenyl-1-diazenes, which are able to give the corresponding cycloalky [d][1,3]thiazoline derivatives, that, in turn, can be further converted into interesting thia-triaza-tricyclo derivatives. We also describe an efficient strategy for the preparation of unknown spirocycloalkyl-thiazolinones of different sizes using cycloalkyl-1-diazenes and thioureas. This methodology proceeds rapidly to completion, is very selective and wide in scope, produces the compounds in high yields, generates only inoffensive by-products (alcohols), requires simple and mild reaction conditions, uses readily available starting materials and offers a simple product isolation by crystallization in the reaction medium, fulfilling the click chemistry criteria.²⁰ Finally, in this work we investigate the acidic hydrolysis and the ring-opening process of cycloalkyl-thiazoline derivatives and 1-thia-3-azaspiro compounds.

2. Results and discussion

1-Cycloalkenyl-1-diazenes 5a-h were prepared from cyclic β -ketoesters 1a-e and hydrazine derivatives 2a-c (1 equiv), in methanol (MeOH) or tetrahydrofuran (THF), at room temperature to achieve the corresponding hydrazones 3a-h. These latter were subjected to bromination by the action of *N*-bromosuccinimide (NBS, 1 equiv) in dichloromethane (DCM) at room temperature to obtain the respective brominated hydrazones 4. Treatment of 4 with aqueous saturated solution of sodium carbonate at room temperature provided the new cycloalkenyl-1-diazenes 5a-h in good yields (Scheme 2, Table 1).²¹

N-1-Phenyl-2-(1-cyclohexenyl)-1-diazene-1-carboxamide **5i** was prepared by reaction at room temperature of 2-chlorocyclohexanone **1f** with 4-phenylsemicarbazide **2c** affording the relevant halogenated hydrazone **3i** that was then treated at room temperature with sodium hydroxide (1%) (Scheme 2, Table 1).

Table 1 Yields of hydrazones 3a-i and 1-cycloalkenyl-1-diazenes 5a-i

		-				-			
1	п	\mathbb{R}^1	\mathbb{R}^2	2	R ³	3	Yield ^a (%)	5	Yield ^b (%)
1a	1	Н	CO ₂ Et	2a	NH ₂	3a	89	5a	78
1a	1	Н	CO ₂ Et	2b	Ot-Bu	3b	86	5b	63
1b	2	Н	CO ₂ Et	2a	NH_2	3c	91	5c	76
1b	2	Н	CO ₂ Et	2b	Ot-Bu	3d	90	5d	60
1b	2	Н	CO ₂ Et	2c	NHPh	3e	86	5e	63
1c	2	Me	CO ₂ Et	2a	NH_2	3f	93	5f	74
1d	3	Н	CO_2Me	2a	NH_2	3g	87	5g	82
1e	4	Н	CO ₂ Et	2a	NH_2	3h	83	5h	92
1f	2	Н	Н	2c	NHPh	3i	95	5i	65

^a Yields of the pure products **3a**-**i** based on the carbonyl compounds **1a**-**f**. ^b Yields of the pure isolated products **5a**-**i** based on the hydrazone compounds **3a**-**i**.

Thioamides 6a-i easily added to cycloalkenyl-1-diazenes 5a,c,f-h in methanol at room temperature affording new tetrahydro-cyclopenta[d][1,3]thiazolines 9a-d (n=1), hexahydro-1,3benzothiazolines 9e-m (n=2), hexahydro-cyclohepta[d][1,3]thiazolines 9n-p (n=3) and octahydrocycloocta[d][1,3]thiazolines 9q-t (n=4) in good yields (Scheme 3, Table 2). The reaction occurs by a preliminary nucleophilic attack by the sulfur of thioamides 6a-i at the terminal carbon atom of the azo-ene system^{17,18} of **5** with formation of the respective 1,4-adduct (Michaeltype) cycloalkyl-hydrazones intermediates 7. They immediately undergo the thiazole ring closure by regioselective internal nucleophilic attack from the imino nitrogen of the thioamides at the hydrazono moiety, producing interesting cycloalkyl[d][1,3]thiazoline derivatives 9. Their structure, proposed on the basis of spectrometric (¹H and ¹³C NMR as well as MS) data, was definitively confirmed by X-ray diffraction determination on 9k (Fig. 1).²²

Significant differences in the regioselectivity were observed in the previous reaction of thioamides on 1,2-diaza-1,3-butadienes under the same experimental conditions.¹⁷ In such a case, the second nucleophilic attack of the imino nitrogen occurs only at the ester function on the terminal carbon of the azo—ene system leading to the corresponding 2-thiazolin-4-ones **III**

(Scheme 1). By using cycloalkenyl-1-diazenes, no formation of spirocycloalkyl-thiazolinones 8 by means of the internal nucleophilic attack of the imino nitrogen on the ester function was observed (Scheme 3). The presence in 9 of both ester and semicarbazide groups makes them able to be further modified. In fact, by treatment of compounds 9c-h,j,q-s in ethanol at room temperature with a stoichiometric amount of sodium hydride, the internal nucleophilic attack of the semicarbazide nitrogen at the ester function caused the second ring closure giving the intermediates 10 (Scheme 3). The spontaneous loss of the carbamic residue produced the new 6-thia-2,3,8-triaza-tricyclo[3.3.3.0^{1,5}]undec-7-en-4-ones **11a,b** (*n*=1), 10-thia-7,8,12triaza-tricyclo[$4.3.3.0^{1,6}$]dodec-11-en-9-ones **11c-g** (n=2) and 12-thia-9,10,14-triaza-tricyclo[6.3.3.0^{1,8}]tetradec-13-en-11-ones 11h-j (n=4) (Scheme 3, Table 2). In order to avoid the formation of decomposition products, it was necessary to neutralize the reaction mixture by addition of Amberlyst 15H (2 equiv) immediately after the disappearance of the starting thiazoles 9.

We have also investigated the reactivity of ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(4-chlorophenyl)-3a,4,5,6,7,7a-hexa-hydro-1,3-benzothiazole-7a-carboxylate **9g** and of ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(4-chlorophenyl)-3a,4,5,6,7, 8,9,9a-octahydrocycloocta[d][1,3]thiazoline-9a-carboxylate **9s** with 4 equiv of Amberlyst 15H in a mixture of acetone—water (9:1) at room temperature (Scheme 3, Table 2).²³ In these cases we observed the hydrolytic thiazoline ring-opening with formation of mixtures of imino- (**12a**,**b**) and keto-cycloalkyl (**13a**,**b**) derivatives in different ratios.

The reaction of thiourea **14a**, N,N'-dimethylthiourea **14b** and N,N'-diethylthiourea **14c** on the same cycloalkenyl-1-diazenes **5a**—**h** in methanol at room temperature was parallelly investigated (Scheme 4). The reaction proceeds by means of the

1,4-conjugate addition (Michael-type) of thioureas to the heterodiene system of diazenes by a sulfur nucleophilic attack affording the hydrazone intermediates 15. The further cyclization process occurred by regioselective internal nucleophilic attack of the second NH group of thioureas at the ester function giving 2-imino-4-oxo-1-thia-3-azaspiro[4.4]non-6-ylidenes 16a**d** (n=1), 2-imino-4-oxo-1-thia-3-azaspiro[4.5]dec-6-ylidenes 16e-n (n=2), 2-imino-4-oxo-1-thia-3-azaspiro[4.6]undec-6ylidenes 160-q (n=3) and 2-imino-4-oxo-1-thia-3-azaspiro[4.7]dodec-6-vlidenes 16r-t (n=4) in very good yields (Scheme 4, Table 3). It has been reported that molecules with structures similar to 16 exhibit antipsychotic activity.²⁴ The peculiar regioselectivity observed in the ring closure process of these reactions could depend on the different nucleophilicity of thioamides and thioureas together with the diverse nucleophilic affinity of ester and hydrazone groups. Also the typical strain of cyclic azadienes compared with that of open-chain ones could play an important role.

In the case of the reaction of thiourea **14a** or *N*,*N'*-dialkylthioureas **14b**,**c** on cycloalkenyl-1-diazenes **5a**—**h** we observed the same regioselectivity of the second internal nucleophilic attack as for 1,2-diaza-1,3-butadienes I with the same thiourea derivatives IV (Scheme 1).¹⁸ However, thiourea derivatives added to 1,2-diaza-1,3-butadienes with a 2:1 molar ratio thus giving 5,5-disubstituted 3-alkyl-2-(alkylimino)-thiazolidin-4-ones VI. This can be related to the presence of the strongly acidic hydrogen on the carbon in α -position with respect to the sulfur and to the ester group of the thiazolinone **V**, which makes possible a further addition on another 1,2-diaza-1,3-butadiene molecule even in neutral conditions (Scheme 1). Cycloalkenyl-1-diazenes **5** lack the above hydrogen and this makes possible the direct isolation of the spirocycloalkyl-thiazolinone **16** without the formation of further products of reaction.

Fable 2
Yields of cycloalkyl[d][1,3]thiazolines 9a-t, thia-triaza-tricyclo derivatives 11a-j, iminocycloalkyl derivatives 12a,b and keto-cycloalkyl derivatives 13a,b

5	n	\mathbf{R}^1	6	\mathbb{R}^3	9	Yield ^a (%)	11	Yield ^b (%)	12	Yield ^c (%)	13	Yield ^c (%)
5a	1	Н	6a		9a	68						
5a	1	Н	6b	$-\langle \rangle$	9b	59						
5a	1	Н	6c		9c	91	11a	54				
5a	1	Н	6d		9d	86	11b	44				
5c	2	Н	6a		9e	93	11c	63				
5c	2	Н	6c		9f	97	11d	56				
5c	2	Н	6e		9g	64	11e	59	12a	67	1 3 a	12
5c	2	Н	6f	F F	9h	96	11f	63				
5c	2	Н	6g	s	9i	92						
5f	2	Me	6a		9j	92	11g	62				
5f	2	Me	6e	сі	9k	69						
5f	2	Me	6h	S CH3	91	84						
5f	2	Me	6i	-\\\N	9m	77						
5g	3	Н	6a		9n	72						
5g	3	Н	6e		90	82						
5g	3	Н	6f	– – F	9p	76						
5h	4	Н	6a		9q	81	11h	43				
5h	4	Н	6c		9r	82	11i	36				
5h	4	Н	6e	сі	9s	78	11j	45	12b	8	13b	58
5h	4	Н	6f	F	9t	83						

^a Yields of the pure isolated products **9a-t** based on the cycloalkenyl-1-diazenes **5a,c,f-h**.

^b Yields of the pure isolated products **11a**–**j** based on the thiazolines **9c**–**h**,**j**,**q**–**s**.

^c Yields of the pure isolated products 12a,b and 13a,b based on the thiazolines 9g,s.

In order to obtain the corresponding ketone derivatives, we have also investigated the hydrolysis of the hydrazono moiety of compounds **16b,c,e–h,l,n–p,s** by treatment with 4 equiv of Amberlyst 15H in a mixture of acetone–water (9:1) at room temperature (Scheme 4, Table 3).²³

Only the treatment of 4-oxo-1-thia-3-azaspiro[4.6]undec-6-ylidenes **160**, p(n=3) or of 4-oxo-1-thia-3-azaspiro[4.7]dodec-6-ylidene **16s** (n=4) led to the formation of the stable 1-thia-3-azaspiro[4.6]undecan-4,6-diones **17b**, c or of 1-thia-3-azaspiro[4.7]dodecan-4,6-dione **17d**, respectively.

Surprisingly enough, we achieved the 2-imino-5-(ω -carboxyalkyl)-4-thiazolidinone compounds **18a–f** from 4-oxo-1-thia-3-azaspiro[4.4]non-6-ylidenes **16b,c** (n=1) or 4-oxo-1-thia-3-azaspiro[4.5]dec-6-ylidenes **16e–h,l,n** (n=2). Only from **16g** it was possible to isolate the ketone **17a** by flash chromatography.

To obtain the corresponding carboxylic acids 18g-i (n=3,4) the reaction mixture was refluxed for 3-4h in the presence of Amberlyst 15H (Scheme 4, Table 3). It has been reported that molecules similar to 18 exhibit antitubercular

Figure 1. Crystal structure of compound 9k. Ellipsoids enclose 50% probability.

activity.²⁵ Concerning the formation of **18**, they can be derived from the preliminary hydrolysis of the semicarbazono moiety of **16** to give rise to the ketones **17**, which by a retro-Claisen reaction occurring with a ring-opening process afford 2-imino- $5-(\omega$ -carboxyalkyl)-4-thiazolidinone derivatives **18a**–i. Their structure, proposed on the basis of spectrometric (¹H and ¹³C NMR as well as MS) data, was definitively confirmed by X-ray diffraction determination on **18d** (Fig. 2).²⁶

Scheme 4.

Lastly, we have also investigated the reactivity of two cyclic thioureas (five-member ring: imidazolidine-2-thione **19a**; or six-member ring: tetrahydropyrimidine-2-thione **19b**) in methanol at room temperature with cycloalkenyl-1-diazenes **5a,c,g,h**: the new 5',6'-dihydro-2*H*-spiro[cycloalkyl-1,2'-imidazo[2,1-*b*][1,3]thiazole]-2,3'-dione 2-semicarbazones **21a,c,f**

Table 3

Yields of spirocycloalkyl-thiazolinones 16a-t, ketones 17a-d and 2-imino- $5(\omega$ -carboxyalkyl)-4-thiazolidinones 18a-i

5	n	R ¹	R ²	R ³	14	R^4	16	Yield ^a (%)	17	Yield ^b (%)	18	Yield ^b (%)	Yield ⁶ (%)
5a	1	Н	Et	NH_2	14a	Н	16a	96					
5a	1	Н	Et	NH_2	14b	Me	16b	87			18a	54	
5a	1	Н	Et	NH_2	14c	Et	16c	83			18b	61	
5b	1	Н	Et	Ot-Bu	14a	Н	16d	78					
5c	2	Н	Et	NH_2	14a	Н	16e	79			18c	52	
5c	2	Н	Et	NH_2	14b	Me	16f	82			18d	49	
5c	2	Н	Et	NH_2	14c	Et	16g	83	17a	6	18e	48	
5d	2	Н	Et	Ot-Bu	14b	Me	16h	76			18d	61	
5e	2	Н	Et	NHPh	14a	Н	16i	85					
5e	2	Н	Et	NHPh	14b	Me	16j	92					
5e	2	Н	Et	NHPh	14c	Et	16k	81					
5f	2	Me	Et	NH_2	14a	Н	16l	89			18f	52	
5f	2	Me	Et	NH_2	14b	Me	16m	76					
5f	2	Me	Et	NH_2	14c	Et	16n	79			18g	45	
5g	3	Н	Me	NH_2	14a	Н	160	85	17b	69	18h	12	41
5g	3	Н	Me	NH_2	14b	Me	16p	79	17c	65	18i	8	40
5g	3	Н	Me	NH_2	14c	Et	16q	84					
5h	4	Н	Et	NH_2	14a	Н	16r	89					
5h	4	Н	Et	$\overline{NH_2}$	14b	Me	16s	92	17d	73	18j	11	36
5h	4	Н	Et	$\overline{NH_2}$	14c	Et	16t	94			U		

 a Yields of the pure isolated products $16a{-t}$ based on the cycloalkenyl-1-diazenes $5a{-h}.$

^b Yields of the pure isolated **17a-d** and **18a-i** based on the spiro compounds **16**.

^c Yields of the pure isolated products **18g-i** based on the compounds **17b-d**.

Figure 2. Ortep drawing of 18d. Ellipsoids of non-hydrogen atoms enclose 50% probability.

(m=1) or the 6',7'-dihydro-2H,5'H-spiro[cycloalkyl-1,2'-[1,3]thiazolo[3,2-*a*]pyrimidine]-2,3'-dione 2-semicarbazones **21b,d,e,g** (m=2) were obtained in good yields (Scheme 5, Table 4). Interestingly, compounds **21** represent the spiro-tricyclic counterpart of the relevant spiro-bicyclic **16** previously obtained (Scheme 4).

Under the same experimental conditions, the cyclic thiourea tetrahydropyrimidine-2-thione 19b reacted with the N1-phenvl-2-(1-cvclohexenvl)-1-diazene-1-carboxyamide 5i, but the reaction stopped with the formation of 2-(1,4,5,6-tetrahydropyrimidin-2-ylthio)cyclohexan-1-one N-phenylsemicarbazone 20a. As a matter of fact the absence of the ester group on the terminal carbon of the heterodiene system prevents the formation of the thiazolinone system (Scheme 5, Table 4). On the other hand, the treatment of 5i with 14b,c gave the usual α -thiohydrazone 1.4-adduct intermediates 22, which by further internal nucleophilic attack of the NH of the thioureic group at the hydrazono double bond determines the closure to the hexahydro-1,3-benzothiazol-3a(4H)-yl-N-phenylhydrazinecarboxamides 23a,b in good yields (Scheme 5, Table 4). The further cyclization as for compounds 22 does not proceed in the case of 20a probably because of the three fused strained rings.

3. Conclusion

The present investigation has evidenced a different behaviour in the reactions of thioamides and thioureas on 1,2-diaza-1,3-butadienes (I) or cycloalkyl-1-diazenes (5) and demonstrates that the use of these cyclic azoalkenes provides straightforward access to new classes of interesting heterocycles. As a matter of fact in the whole the syntheses realized indicate that 5 can react with different sulfur activated nucleophiles showing an interesting variegate reactivity: (1) with thioamides the bicyclic thiazolines 9 and the tricyclic pyrazolinones 11 can be obtained; (2) with open-chain thioureas 14 the spirothiazolines 16 and 17 or the bicyclothiazolines 23 can be synthesized; (3) with cyclic thioureas 19 (containing a five- or a six-member ring) the tricyclic 21 can be obtained. These one-pot synthetic methodologies proceed under very mild reaction conditions using easily available starting materials and provide interesting new products in high yields without complicated work-up procedures. In particular, the reactions of thioureas with cycloalkyl-1-diazenes furnish crude products (16, 17, 21) at a high purity degree by direct precipitation from the reaction mixture. Moreover, the acidic hydrolysis with ring-opening of 17 furnishes the acids 18 with a core structure similar to that of some antitubercular drugs. In conclusion, we described the syntheses of different

Tal	ble	4

Yields of 2-(1,4,5,6-tetrahydropyrimidin-2-ylthio)cyclohexan-1-one *N*-phenylsemicarbazone **20a**, spiro-cycloalkyl-1,2'-imidazo[2,1-*b*][1,3]thiazoles **21a**,c,f, spiro-cycloalkyl-1,2'-[1,3]thiazolo[3,2-*a*]pyrimidines **21b**,d,e,g and hexahydro-1,3-benzothiazoles **23a**,b

5	n	\mathbb{R}^1	\mathbb{R}^2	14	\mathbb{R}^4	19	т	20	Yield ^a (%)	21	Yield ^a (%)	23	Yield ^a (%)
5a	1	CO ₂ Et	NH ₂			19a	1			21a	85		
5a	1	CO ₂ Et	NH_2			19b	2			21b	88		
5c	2	CO ₂ Et	NH ₂			19a	1			21c	76		
5c	2	CO ₂ Et	NH_2			19b	2			21d	79		
5g	3	CO ₂ Me	NH_2			19b	2			21e	74		
5h	4	CO ₂ Et	NH ₂			19a	1			21f	88		
5h	4	CO ₂ Et	NH_2			19b	2			21g	94		
5i	2	Н	NHPh			19b	2	20a	76				
5i	2	Н	NHPh	14a	Me							23a	85
5i	2	Н	NHPh	14b	Et							23b	88

^a Yields of the pure isolated products 20a, 21a-g and 23a,b based on cycloalkenyl-1-diazenes 5a,b,g-i.

new classes of polyheterocyclics of interest as targets in organic, biological, medicinal and agricultural chemistry: all the examined syntheses usually occur with excellent yields (82–97%).

4. Experimental

4.1. General experimental section

Ethyl 2-oxocyclopentanecarboxylate, ethyl 2-oxocyclohexanecarboxylate, ethyl 4-methyl-2-oxocyclohexanecarboxylate, methyl 2-oxocycloeptanecarboxylate, ethyl 2-oxocyclooctanecarboxylate, 2-chlorocycloesanone, semicarbazide hydrochloride, 4-phenylsemicarbazide, tert-butyl carbazate, N-bromosuccinimide, thiobenzamide, thionicotinamide, 4methoxythiobenzamide, 4-(trifluoromethyl)thiobenzamide, 4-chloro-thiobenzamide, 2,4-difluorothiobenzamide, thiophene-2-thiocarboxyamide, 2-methylthiazole-4-thiocarboxyamide, thioisonicotinamide, sodium hydride, Amberlyst 15H, thiourea, N,N'-dimethylthiourea, N,N'-diethylthiourea, imidazolidine-2-thione, tetrahydropyrimidine-2-thione were commercial materials and were used without further purification. Solvents were purchased and used without further purification with the exception of THF, which was distilled over sodium hydroxide. Melting points were determined in open capillary tubes and are uncorrected. FTIR spectra were obtained as Nujol mulls. Mass spectra (MS) were carried out by electron impact (EI) at an ionizing voltage of 70 eV. ¹H (400 MHz) and ¹³C (100 MHz) spectra were recorded in CDCl₃ or in DMSO-d₆, as specified below. Chemical shifts ($\delta_{\rm H}$) are reported in parts per million (ppm), relative to TMS as internal standard. All coupling constant (J) values are given in hertz. Chemical shifts ($\delta_{\rm C}$) are reported in parts per million (ppm), relative to CDCl₃ or DMSO- d_6 , as internal standard in a broad band decoupled mode; the multiplicities were obtained using 135° and 90° DEPT experiments to aid in assignment (q=methyl, t=methylene, d=methine, s=quaternary). The abbreviations used are as follows: s, singlet; d, doublet; dd, double-doublet; t, triplet; q, quartet; qui, quintet; oc, octet; m, multiplet; br, broad; cy, cycloalkylic; alk, alkyl; Ar, aromatic. All the NH and NH₂ exchanged with D₂O. Precoated silica gel plates 0.25 mm were employed for analytical thin layer chromatography and silica gel 35-70 µm for column chromatography. All new compounds showed satisfactory elemental analysis (C ± 0.35 ; H ± 0.30 ; N ± 0.30). The nomenclature was generated using ACD/IUPAC Name (version 3.50, 5 Apr. 1998), Advanced Chemistry Development Inc., Toronto, ON (Canada).

4.2. General procedure for the synthesis of cycloalkenyl-1diazenes **5a**-i

Semicarbazide hydrochloride 2a (1.0 mmol) or *tert*-butyl carbazate 2b (1.0 mmol) or 4-phenylsemicarbazide 2c (1.0 mmol)was added at room temperature to a magnetically stirred solution of cyclic β -dicarbonyl compounds 1a-e (1.0 mmol) in methanol (30 mL) in the case of 2a, or in tetrahydrofuran (30 mL) in the cases of 2b,c. The semicarbazide hydrochloride 2a was pretreated with an equimolecular amount of sodium acetate. The

reaction was allowed to stand under magnetic stirring at room temperature (4 h) until the disappearance of the reagents (monitored by TLC chromatography). The reaction solvent was then evaporated under reduced pressure and the products 3a-h were crystallized by adding ethyl acetate-cyclohexane to the crude. To a magnetically stirred solution of hydrazones 3a-h in dichloromethane (150 mL), N-bromosuccinimide (1.0 equiv) was added portion-wise at room temperature obtaining α-bromohydrazones 4 that were treated with aqueous saturated solution of sodium carbonate (20 mL \times 3). Then, the mixture was dried on sodium sulfate. Dichloromethane was evaporated under reduced pressure and the final cycloalkenyl-1-diazenes 5a-h were purified by chromatography on silica gel column (elution mixtures: ethyl acetate-cyclohexane). In the synthesis of N-1-phenyl-2-(1-cyclohexenyl)-1-diazene-1-carboxyamide 5i, 4-phenylsemicarbazide 2c (1.0 mmol) was added at room temperature to solution of 2-chloro-cyclohexanone 1f (1.0 mmol) in tetrahydrofuran (25 mL). The reaction was allowed to stand under magnetic stirring at room temperature (14.0 h) until the disappearance of the reagents (monitored by TLC chromatography). The reaction solvent was then evaporated under reduced pressure, the crude was dissolved in dichloromethane (80 mL) and treated with an aqueous solution of sodium hydroxide $(1\%, 20 \text{ mL} \times 3)$. Dichloromethane was evaporated under reduced pressure and the final product 5i was crystallized from diethyl ether-light petroleum ether (at 40-60 °C).

4.2.1. Ethyl 2-[2-(aminocarbonyl)-1-diazenyl]-1-cyclopentene-1-carboxylate (5a)

Red powder, mp 106–108 °C; IR (Nujol) ν_{max} 3402, 3237, 1718, 1694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.28 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 2.02 (qui, 2H, ³*J*=7.2 Hz, cy), 2.67–2.72 (m, 2H, cy), 2.90–2.95 (m, 2H, cy), 4.26 (q, 2H, ³*J*=7.2 Hz, OCH₂CH₃), 6.46 (br s, 2H, NH₂); ¹³C NMR (100 MHz, CDCl₃) δ 14.0 (q), 20.1 (t), 29.5 (t), 34.7 (t), 61.2 (t), 145.6 (s), 159.0 (s), 162.4 (s), 164.2 (s); MS (EI) *m/z* (%) 213 (5) [M⁺+2], 211 (4) [M⁺], 167 (46), 140 (36), 122 (100). Anal. Calcd for C₉H₁₃N₃O₃: C, 51.18; H, 6.20; N, 19.89. Found: C, 51.10; H, 6.13; N, 19.96.

4.2.2. tert-Butyl 2-[2-(ethoxycarbonyl)-1-cyclopentenyl]-1diazene-1-carboxylate (**5b**)

Red oil; IR (Nujol) ν_{max} 3376, 3200, 1717, 1703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.30 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.60 (s, 9H, C(CH₃)₃), 2.01 (qui, 2H, ³*J*=7.8 Hz, cy), 2.63–2.69 (m, 2H, cy), 2.90–2.97 (m, 2H, cy), 4.29 (q, 2H, ³*J*=7.2 Hz, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 14.0 (q), 20.2 (t), 27.7 (q), 29.3 (t), 34.7 (t), 61.1 (t), 84.8 (s), 144.7 (s), 159.3 (s), 161.2 (s), 164.6 (s); MS (EI) *m/z* (%) 270 (6) [M⁺+2], 268 (4) [M⁺], 211 (13), 195 (45), 168 (100), 136 (17), 122 (36). Anal. Calcd for C₁₃H₂₀N₂O₄: C, 58.19; H, 7.51; N, 10.44. Found: C, 58.24; H, 7.53; N, 10.36.

4.2.3. Ethyl 2-[2-(aminocarbonyl)-1-diazenyl]-1-cyclohexene-1-carboxylate (**5c**)

Red powder, mp 110–112 °C; IR (Nujol) ν_{max} 3358, 3220, 1721, 1695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.32 (t, 3H,

 ${}^{3}J$ =7.2 Hz, OCH₂*CH*₃), 1.67–1.80 (m, 4H, cy), 2.36–2.39 (m, 2H, cy), 2.66–2.69 (m, 2H, cy), 4.30 (q, 2H, ${}^{3}J$ =7.2 Hz, O*CH*₂CH₃), 5.37 and 6.14 (2br s, 2H, NH₂); 13 C NMR (100 MHz, CDCl₃) δ 14.2 (q), 20.9 (t), 21.2 (t), 21.7 (t), 28.0 (t), 61.4 (t), 148.0 (s), 151.5 (s), 162.5 (s), 168.6 (s); MS (EI) *m*/*z* (%) 225 (14) [M⁺], 208 (2), 197 (5), 154 (37), 137 (71), 125 (100), 109 (100). Anal. Calcd for C₁₀H₁₅N₃O₃: C, 53.32; H, 6.71; N, 18.66. Found: C, 53.42; H, 6.67; N, 18.59.

4.2.4. tert-Butyl 2-[2-(ethoxycarbonyl)-1-cyclohexenyl]-1diazene-1-carboxylate (5d)

Red oil; IR (Nujol) ν_{max} 3407, 3196, 1734, 1689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.28 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.55 (s, 9H, C(CH₃)₃), 1.68–1.74 (m, 4H, cy), 2.18–2.27 (m, 2H, cy), 2.57–2.63 (m, 2H, cy), 4.27 (q, 2H, ³*J*=7.2 Hz, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 14.1 (q), 21.0 (t), 21.2 (t), 27.6 (q), 38.7 (t), 40.4 (t), 62.7 (t), 84.2 (s), 147.2 (s), 151.3 (s), 161.3 (s), 169.0 (s); MS (EI) *m*/*z* (%) 284 (3) [M⁺+2], 282 (1) [M⁺], 225 (21), 209 (36), 180 (100), 153 (42), 136 (79). Anal. Calcd for C₁₄H₂₂N₂O₄: C, 59.56; H, 7.85; N, 9.92. Found: C, 59.43; H, 7.81; N, 9.96.

4.2.5. Ethyl 2-[2-(anilinocarbonyl)-1-diazenyl]-1-cyclohexene-1-carboxylate (5e)

Red powder, mp 90–92 °C with decomposition; IR (Nujol) ν_{max} 3365, 3172, 1718, 1674 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.33 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.74–1.79 (m, 4H, cy), 2.35–2.39 (m, 2H, cy), 2.67–2.71 (m, 2H, cy), 4.32 (q, 2H, ³*J*=7.2 Hz, O*CH*₂CH₃), 7.14 (t, 1H, ³*J*=7.2 Hz, Ar), 7.35 (t, 2H, ³*J*=8.4 Hz, Ar), 7.62 (d, 2H, ³*J*=8.4 Hz, Ar), 8.31 (br s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 14.2 (q), 20.9 (t), 21.2 (t), 21.9 (t), 28.1 (t), 61.5 (t), 119.4 (d), 124.7 (d), 129.1 (d), 136.6 (s), 148.1 (s), 151.5 (s), 157.3 (s), 168.4 (s); MS (EI) *m/z* (%) 303 (3) [M⁺+2], 301 (11) [M⁺], 272 (17), 256 (37), 228 (100), 209 (46), 180 (17), 165 (15), 109 (64). Anal. Calcd for C₁₆H₁₉N₃O₃: C, 63.77; H, 6.35; N, 13.94. Found: C, 63.65; H, 6.27; N, 13.99.

4.2.6. *Ethyl* 2-[2-(*aminocarbonyl*)-1-*diazenyl*]-4-*methyl*-1cyclohexene-1-carboxylate (5f)

Red powder, mp 72–74 °C; IR (Nujol) ν_{max} 3399, 3180, 1729, 1686 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.03 (d, 3H, ³*J*=6.0 Hz, CH*CH*₃), 1.31 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.34–1.42 (m, 1H, cy), 1.76–1.85 (m, 3H, cy), 2.54–2.74 (m, 3H, cy), 4.27 (q, 2H, ³*J*=7.2 Hz, O*CH*₂CH₃), 6.12 and 6.17 (2br s, 2H, NH₂); ¹³C NMR (100 MHz, CDCl₃) δ 14.2 (q), 21.2 (t), 27.5 (d), 28.0 (t), 29.3 (t), 29.8 (t), 61.4 (t), 146.7 (s), 151.2 (s), 162.4 (s), 168.6 (s); MS (EI) *m*/*z* (%) 239 (4) [M⁺], 224 (4), 208 (1), 168 (27), 151 (45), 139 (92), 123 (100), 111 (52). Anal. Calcd for C₁₁H₁₇N₃O₃: C, 55.22; H, 7.16; N, 17.56. Found: C, 55.31; H, 7.25; N, 17.50.

4.2.7. Methyl 2-[2-(aminocarbonyl)-1-diazenyl]-1-cycloheptene-1-carboxylate (**5**g)

Red powder, mp 86–89 °C; IR (Nujol) ν_{max} 3365, 3218, 1726, 1695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.54–1.67

(m, 2H, cy), 1.77–1.88 (m, 4H, cy), 2.63–2.72 (m, 4H, cy), 3.82 (s, 3H, OCH₃), 5.40 and 6.10 (2br s, 2H, NH₂); ¹³C NMR (100 MHz, CDCl₃) δ 13.4 (t), 24.3 (t), 26.0 (t), 31.2 (t), 31.3 (t), 52.3 (q), 152.9 (s), 157.2 (s), 161.9 (s), 169.9 (s); MS (EI) *m*/*z* (%) 227 (2) [M⁺+2], 225 (4) [M⁺], 195 (2), 182 (7), 168 (8), 154 (100), 139 (38), 122 (100), 109 (81). Anal. Calcd for C₁₀H₁₅N₃O₃: C, 53.32; H, 6.71; N, 18.66. Found: C, 53.26; H, 6.69; N, 18.72.

4.2.8. Ethyl 2-[2-(aminocarbonyl)-1-diazenyl]-1-cyclooctene-1-carboxylate (**5h**)

Red powder, mp 72–74 °C; IR (Nujol) ν_{max} 3385, 3154, 1721, 1659 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.13 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.25–1.41 (m, 6H, cy), 1.67–1.73 (m, 2H, cy), 2.43–2.48 (m, 2H, cy), 2.52–2.60 (m, 2H, cy), 4.13 (q, 2H, ³*J*=7.2 Hz, O*CH*₂*CH*₃), 6.21 and 6.67 (2br s, 2H, NH₂); ¹³C NMR (100 MHz, CDCl₃) δ 13.9 (q), 21.7 (t), 25.8 (t), 25.9 (t), 27.6 (t), 29.6 (t), 29.9 (t), 60.9 (t), 150.4 (s), 153.6 (s), 162.7 (s), 168.9 (s); MS (EI) *m/z* (%) 254 (3) [M⁺+1], 211 (5), 182 (33), 165 (100), 153 (100), 135 (92), 107 (100). Anal. Calcd for C₁₂H₁₉N₃O₃: C, 56.90; H, 7.56; N, 16.59. Found: C, 56.92; H, 7.63; N, 16.54.

4.2.9. N1-Phenyl-2-(1-cyclohexenyl)-1-diazene-1-carboxyamide (5i)

Red powder, mp 86–88 °C; IR (Nujol) ν_{max} 3257, 3165, 1704, 1679 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.68–1.78 (m, 4H, cy), 2.30–2.41 (m, 2H, cy), 2.46–2.55 (m, 2H, cy), 7.16 (t, 1H, ³*J*=7.2 Hz, Ar), 7.28–7.40 (m, 3H, Ar and C=CH), 7.70 (d, 2H, ³*J*=8.4 Hz, Ar), 8.46 (s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 21.4 (t), 21.7 (t), 22.4 (t), 27.1 (t), 119.4 (d), 124.6 (d), 129.0 (d), 137.0 (s), 151.5 (d), 155.5 (s), 157.8 (s); MS (EI) *m*/*z* (%) 229 (18) [M⁺], 152 (73), 137 (100), 109 (100). Anal. Calcd for C₁₃H₁₅N₃O: C, 68.10; H, 6.59; N, 18.33. Found: C, 68.22; H, 6.54; N, 18.42.

4.3. General procedure for the synthesis of tetrahydrocyclopenta[d][1,3]thiazolines **9a**–**d**, hexahydro-1,3benzothiazolines **9e**–**m**, hexahydro-cyclohepta[d]-[1,3]thiazolines **9n**–**p** and octahydrocycloocta[d]-[1,3]thiazolines **9q**–**t**

Cycloalkenyl-1-diazenes **5a,c,f–h** (1.0 mmol) were added at room temperature to a magnetically stirred solution of aryl thioamides **6a–i** (1.0 mmol) in methanol (10 mL). The reaction was allowed to stand under magnetic stirring at room temperature (0.5–1.5 h) until the disappearance of the reagents (monitored by TLC chromatography). The compounds **9c–e,g,k,l** crystallized directly from the reaction medium and were collected as pure products by filtration. In the other cases, the reaction solvent was evaporated under reduced pressure and the final cycloalkyl[*d*][1,3]thiazolines **9a,b,h–j,m–t** were purified by chromatography on silica gel column (elution mixtures: ethyl acetate—cyclohexane) and crystallized from ethyl acetate—cyclohexane.

4.3.1. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-phenyl-4,5,6,6a-tetrahydro-3aH-cyclopenta[d][1,3]thiazoline-6acarboxylate (**9a**)

Colourless powder, mp 141–143 °C with decomposition; IR (Nujol) ν_{max} 3474, 3375, 3216, 3176, 1708, 1684, 1555 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.27 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.73–1.85 (m, 2H, cy), 2.09–2.28 (m, 3H, cy), 2.73–2.81 (m, 1H, cy), 4.24 (q, 2H, ³*J*=7.2 Hz, O*CH*₂CH₃), 4.91 (br s, 1H, NH), 5.67 (br s, 2H, NH₂), 6.60 (s, 1H, NH), 7.46 (t, 2H, ³*J*=7.6 Hz, Ar), 7.52 (t, 1H, ³*J*=6.4 Hz, Ar), 7.78 (d, 2H, ³*J*=7.6 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 14.0 (q), 22.8 (t), 37.6 (t), 40.0 (t), 62.5 (t), 71.4 (s), 110.8 (s), 128.4 (d), 128.6 (d), 131.8 (d), 132.1 (s), 160.8 (s), 166.7 (s), 171.1 (s); MS (EI) *m/z* (%) 348 (8) [M⁺], 319 (42), 303 (67), 275 (100), 275 (64), 259 (43), 231 (100), 203 (86), 183(49), 126 (72). Anal. Calcd for C₁₆H₂₀N₄O₃S: C, 55.16; H, 5.79; N, 16.08. Found: C, 55.04; H, 5.84; N, 16.00.

4.3.2. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(3-pyridyl)-4,5,6,6a-tetrahydro-3aH-cyclopenta[d][1,3]thiazoline-6a-carboxylate (**9b**)

Colourless powder, mp 144–146 °C; IR (Nujol) ν_{max} 3476, 3354, 3243, 3165, 1735, 1691 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.28 (t, 3H, ³J=6.8 Hz, OCH₂CH₃), 1.70–1.87 (m, 2H, cy), 2.11–2.29 (m, 3H, cy), 2.77–2.82 (m, 1H, cy), 4.26 (q, 2H, ${}^{3}J=6.8$ Hz, OCH₂CH₃), 4.93 (br s, 1H, NH), 5.62 (br s, 2H, NH₂), 6.73 (s, 1H, NH), 7.38 (ddd, 1H, ${}^{3}J=7.6$ Hz, ${}^{3}J=4.8$ Hz, ${}^{5}J=0.4$ Hz, Ar), 8.10 (ddd, 1H, ${}^{3}J=$ ${}^{4}J=2.4$ Hz, ${}^{4}J=2.0$ Hz, Ar), 8.70 (dd, 8.0 Hz, 1H, ${}^{3}J=4.8$ Hz, ${}^{4}J=1.6$ Hz, Ar), 8.70 (d, 1H, ${}^{4}J=1.2$ Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 14.0 (q), 22.8 (t), 37.6 (t), 40.0 (t), 62.6 (t), 72.0 (s), 111.3 (s), 123.5 (d), 128.4 (d), 135.9 (s), 149.0 (s), 152.0 (s), 160.8 (s), 163.1 (s), 170.9 (s); MS (EI) *m*/*z* (%) 349 (5) [M⁺], 304 (85), 276 (100), 232 (69), 204 (26), 157 (48), 110 (78). Anal. Calcd for C₁₅H₁₉N₅O₃S: C, 51.56; H, 5.48; N, 20.04. Found: C, 51.55; H, 5.51; N, 20.13.

4.3.3. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(4-methoxyphenyl)-4,5,6,6a-tetrahydro-3aH-cyclopenta[d][1,3]thiazoline-6a-carboxylate (**9**c)

Colourless powder, mp 148–150 °C; IR (Nujol) ν_{max} 3465, 3286, 1742, 1676, 1686, 1585 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.20 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.52–1.63 (m, 1H, cy), 1.77–1.83 (m, 1H, cy), 2.00–2.11 (m, 3H, cy), 2.72–2.80 (m, 1H, cy), 3.82 (s, 3H, OCH₃), 4.16 (q, 2H, ³*J*=7.2 Hz, OCH₂CH₃), 5.43 (s, 1H, NH), 5.86 (br s, 2H, NH₂), 6.76 (br s, 1H, NH), 7.02 (d, 2H, ³*J*=6.8 Hz, Ar), 7.72 (d, 2H, ³*J*=6.8 Hz, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 14.5 (q), 23.2 (t), 37.8 (t), 41.3 (t), 56.2 (q), 62.6 (t), 72.7 (s), 112.5 (s), 114.8 (d), 125.4 (s), 130.6 (d), 160.8 (s), 162.7 (s), 163.3 (s), 171.6 (s); MS (EI) *m*/*z* (%) 378 (1) [M⁺], 304 (25), 289 (100), 260 (13), 232 (75), 198 (25), 156 (61). Anal. Calcd for C₁₇H₂₂N₄O₄S: C, 53.95; H, 5.86; N, 14.80. Found: C, 53.87; H, 5.94; N, 14.71.

4.3.4. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-[4-(trifluoromethyl)phenyl]-4,5,6,6a-tetrahydro-3aH-cyclopenta[d][1.3]thiazoline-6a-carboxylate (**9d**)

Colourless powder, mp 146–148 °C; IR (Nujol) ν_{max} 3472, 3391, 3243, 3114, 1714, 1700, 1564 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.23 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.54–1.64 (m, 1H, cy), 1.78–1.85 (m, 1H, cy), 2.00–2.19 (m, 3H, cy), 2.71–2.87 (m, 1H, cy), 4.18 (q, 2H, ³*J*=7.2 Hz, OCH₂CH₃), 5.58 (s, 1H, NH), 5.87 (br s, 2H, NH₂), 6.89 (s, 1H, NH), 7.87 (d, 2H, ³*J*=8.4 Hz, Ar), 8.00 (d, 2H, ³*J*=8.4 Hz, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.7 (q), 22.6 (t), 37.0 (t), 40.9 (t), 62.0 (t), 72.5 (s), 111.9 (s), 121.8 (s, ¹*J*_{CF}=271.6 Hz), 125.7 (d, ³*J*_{CF}=3.0 Hz), 128.9 (d), 131.5 (s, ²*J*_{CF}=31.9 Hz), 131.8 (s), 160.1 (s), 162.4 (s), 170.6 (s); MS (EI) *m*/*z* (%) 416 (2) [M⁺], 399 (2), 342 (46), 327 (100), 298 (64), 270 (100), 156 (97). Anal. Calcd for C₁₇H₁₉F₃N₄O₃S: C, 49.03; H, 4.60; N, 13.45. Found: C, 49.09; H, 4.53; N, 13.51.

4.3.5. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-phenyl-3a,4,5,6,7,7a-hexahydro-1,3-benzothiazole-7acarboxylate (**9e**)

Colourless powder, mp 133–135 °C with decomposition; IR (Nujol) ν_{max} 3473, 3256, 3156, 1732, 1682 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.27 (t, 3H, ³J=6.8 Hz, OCH₂CH₃), 1.40–1.52 (m, 1H, cy), 1.53–1.56 (m, 1H, cy), 1.59-1.66 (m, 2H, cy), 1.90-1.98 (m, 1H, cy), 2.07-2.11 (m, 1H, cy), 2.18-2.26 (m, 2H, cy), 4.17 (q, 2H, ${}^{3}J=6.8$ Hz, OCH₂CH₃), 5.18 (br s, 1H, NH), 5.72 (br s, 2H, NH₂), 6.56 (br s, 1H, NH), 7.36 (dt, 2H, ${}^{3}J=6.8$ Hz, ${}^{4}J=1.2$ Hz, Ar), 7.43 (dt, 1H, ${}^{3}J=7.2$ Hz, ${}^{4}J=1.2$ Hz, Ar), 7.76 (dt, 2H, ${}^{3}J=7.2$ Hz, ${}^{4}J=1.2$ Hz, Ar); ${}^{13}C$ NMR (100 MHz, CDCl₃) δ 13.8 (q), 20.3 (t), 20.9 (t), 29.0 (t), 35.3 (t), 61.9 (t), 68.1 (s), 93.5 (s), 128.0 (d), 128.4 (d), 131.8 (d), 132.7 (s), 161.2 (s), 167.4 (s), 170.4 (s); MS (EI) m/z (%) 362 (1) [M⁺], 317 (2), 288 (65), 273 (67), 244 (42), 216 (46), 170 (100), 141 (53). Anal. Calcd for C17H22N4O3S: C, 56.38; H, 6.12; N, 15.46. Found: C, 56.38; H, 6.12; N, 15.38.

4.3.6. *Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(4-methoxy-phenyl)-3a,4,5,6,7,7a-hexahydro-1,3-benzothiazole-7a-carboxylate* (**9***f*)

Colourless powder, mp 144–146 °C; IR (Nujol) ν_{max} 3463, 3253, 1737, 1694, 1653, 1604 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.20 (t, 3H, ³J=6.8 Hz, OCH₂CH₃), 1.30–1.38 (m, 1H, cy), 1.44–1.53 (m, 1H, cy), 1.52–1.68 (m, 2H, cy), 1.71–1.83 (m, 1H, cy), 1.89–2.00 (m, 1H, cy), 2.01–2.13 (m, 1H, cy), 2.29–2.36 (m, 1H, cy), 3.81 (s, 3H, OCH₃), 4.13 (q, 2H, ³J=6.8 Hz, OCH₂CH₃), 5.41 (s, 1H, NH), 5.83 (br s, 2H, NH₂), 6.77 (br s, 1H, NH), 7.01 (d, 2H, ³J=6.8 Hz, Ar), 7.73 (d, 2H, ³J=6.8 Hz, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.8 (q), 20.1 (t), 20.9 (t), 29.6 (t), 35.6 (t), 55.4 (q), 61.5 (t), 68.8 (s), 93.6 (s), 124.0 (d), 125.6 (d), 129.7 (d), 160.2 (s), 162.0 (s), 164.7 (s), 170.4 (s); MS (EI) *m*/z (%) 392 (12) [M⁺], 318 (4), 303 (61), 274 (9), 252 (14), 261 (5), 245 (29), 170 (81), 133 (100), 110 (73). Anal.

Calcd for $C_{18}H_{24}N_4O_4S$: C, 55.09; H, 6.16; N, 14.28. Found: C, 55.15; H, 6.11; N, 14.16.

4.3.7. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(4-chlorophenyl)-3a,4,5,6,7,7a-hexahydro-1,3-benzothiazole-7acarboxylate (**9**g)

Colourless powder, mp 163–165 °C; IR (Nujol) v_{max} 3473, 3314, 3256, 3156, 1732, 1682 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.18 (t, 3H, ³J=7.2 Hz, OCH₂CH₃), 1.27–1.35 (m, 1H, cy), 1.43–1.53 (m, 1H, cy), 1.55–1.67 (m, 2H, cy), 1.71-1.81 (m, 1H, cy), 1.89-1.98 (m, 1H, cy), 2.07-2.19 (m, 1H, cy), 2.29–2.38 (m, 1H, cy), 4.14 (q, 2H, ${}^{3}J=7.2$ Hz, OCH₂CH₃), 5.48 (s, 1H, NH), 5.80 (br s, 2H, NH₂), 6.88 (br s, 1H, NH), 7.53 (d, 2H, ³J=8.8 Hz, Ar), 7.78 (d, 2H, $^{3}J=8.8$ Hz, Ar); 13 C NMR (100 MHz, DMSO- d_{6}) δ 13.8 (q), 20.0 (t), 20.9 (t), 29.5 (t), 35.8 (t), 61.7 (t), 69.4 (s), 93.8 (s), 128.8 (d), 129.7 (d), 131.9 (s), 136.5 (s), 160.3 (s), 164.6 (s), 170.2 (s); MS (EI) m/z (%) 324 (12), 322 (37), 309 (5), 307 (14), 278 (12), 252 (14), 250 (43), 205 (100), 189 (6), 167 (21), 137 (82), 111 (87). Anal. Calcd for C₁₇H₂₁ClN₄O₃S: C, 51.45; H, 5.33; N, 14.12. Found: C, 51.43; H, 5.37; N, 14.15.

4.3.8. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(2,4-difluorophenyl)-3a,4,5,6,7,7a-hexahydro-1,3-benzothiazole-7acarboxylate (**9h**)

Colourless powder, mp 119–122 °C; IR (Nujol) v_{max} 3423, 3278, 3169, 1724, 1691 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.13 (t, 3H, ³J=7.2 Hz, OCH₂CH₃), 1.16-1.46 (m, 4H, cy), 1.51-1.60 (m, 1H, cy), 1.76-2.19 (m, 3H, cy), 4.08 (q, 2H, ³J=7.2 Hz, OCH₂CH₃), 5.10 (br s, 1H, NH), 5.85 (br s, 2H, NH₂), 6.74 (dt, $\overline{1}$ H, $\overline{{}^{3}J}$ =8.8 Hz, ${}^{4}J$ =2.4 Hz, Ar), 6.76– 6.87 (m, 2H, NH and Ar), 7.83–7.91 (m, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 13.6 (g), 20.0 (t), 20.6 (t), 28.7 (t), 34.6 (t), 61.7 (t), 67.7 (s), 92.1 (s), 104.1 (d, ${}^{2}J_{CF}=25.8$ Hz, ${}^{3}J_{CF}$ =5.3 Hz), 111.6 (d, ${}^{2}J_{CF}$ =21.2 Hz), 117.4 (s, ${}^{3}J_{CF}$ = 10.7 Hz, ${}^{4}J_{CF}$ =3.1 Hz), 131.6 (s, ${}^{3}J_{CF}$ =9.1 Hz), 160.8 (s, ${}^{1}J_{CF}$ =256.5 Hz, ${}^{3}J_{CF}$ =12.1 Hz), 161.0 (s, ${}^{3}J_{CF}$ =4.4 Hz), 161.4 (s), 164.4 (s, ${}^{1}J_{CF}=253.4$ Hz, ${}^{3}J_{CF}=11.3$ Hz), 170.2 (s); MS (EI) m/z (%) 398 (7) [M⁺], 369 (31), 353 (65), 325 (100), 309 (58), 281 (37), 239 (67), 179 (15), 211 (42), 167 (26), 152 (14). Anal. Calcd for C₁₇H₂₀F₂N₄O₃S: C, 51.25; H, 5.06; N, 14.06. Found: C, 51.21; H, 5.11; N, 14.11.

4.3.9. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(2-thienyl)-3a,4,5,6,7,7a-hexahydro-1,3-benzothiazole-7acarboxylate (**9i**)

Colourless powder, mp 47–49 °C; IR (Nujol) ν_{max} 3458, 3402, 3264, 3136, 1716, 1702, 1587 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.30 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.44–1.76 (m, 4H, cy), 1.94–2.17 (m, 2H, cy), 2.24–2.38 (m, 2H, cy), 4.24 (q, 2H, ³*J*=7.2 Hz, OCH₂CH₃), 5.08 (br s, 3H, NH₂ and NH), 6.13 (br s, 1H, NH), 7.08 (dd, 1H, ³*J*=5.2 Hz, ³*J*=3.6 Hz, Ar), 7.46 (dd, 1H, ³*J*=4.0 Hz, ⁴*J*=1.2 Hz, Ar), 7.51 (dd, 1H, ³*J*=5.2 Hz, ⁴*J*=1.2 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 14.0 (q), 20.5 (t), 21.2 (t), 29.1 (t), 35.9 (t), 62.2 (t), 68.8 (s), 93.4 (s), 127.7 (d), 131.1

(d), 131.3 (d), 136.7 (s), 160.7 (s), 161.0 (s), 170.3 (s); MS (EI) m/z (%) 368 (1) [M⁺], 323 (22), 294 (81), 279 (46), 250 (42), 237 (11), 220 (100), 204 (100), 193 (21), 165 (100). Anal. Calcd for $C_{15}H_{20}N_4O_3S_2$: C, 48.90; H, 5.47; N, 15.21. Found: C, 48.78; H, 5.54; N, 15.13.

4.3.10. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-5-methyl-2phenyl-3a,4,5,6,7,7a-hexahydro-1,3-benzothiazole-7acarboxylate (**9***j*)

Colourless powder, mp 138–140 °C; IR (Nujol) ν_{max} 3484, 3364, 3269, 3148, 1737, 1676 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (d, 3H, ³*J*=6.4 Hz, CH*CH*₃), 1.20 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.30–1.38 (m, 1H, cy), 1.41–1.68 (m, 2H, cy), 1.91–2.03 (m, 2H, cy), 2.26–2.34 (m, 1H, cy), 2.40–2.50 (m, 1H, cy), 4.00–4.14 (m, 2H, O*CH*₂CH₃), 4.89 (br s, 1H, NH), 5.66 and 5.87 (2br s, 2H, NH₂), 6.59 (s, 1H, NH), 7.30–7.45 (m, 3H, Ar), 7.70 (d, 2H, ³*J*=6.8 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 13.6 (q), 21.2 (q), 26.6 (d), 27.0 (t), 29.2 (t), 37.2 (t), 61.7 (t), 66.4 (s), 95.2 (s), 127.7 (d), 128.4 (d), 131.6 (d), 132.8 (s), 161.1 (s), 162.5 (s), 171.6 (s); MS (EI) *m*/*z* (%) 376 (1) [M⁺], 302 (100), 287 (8), 258 (43), 230 (75), 184 (27), 169 (3), 152 (14). Anal. Calcd for C₁₈H₂₄N₄O₃S: C, 57.43; H, 6.43; N, 14.88. Found: C, 57.34; H, 6.49; N, 14.96.

4.3.11. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(4-chlorophenyl)-5-methyl-3a,4,5,6,7,7a-hexahydro-1,3benzothiazole-7a-carboxylate (**9k**)

Colourless powder, mp 156–158 °C; IR (Nujol) ν_{max} 3477, 3254, 1738, 1639, 1612, 1586 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.92 (d, 3H, ³*J*=6.4 Hz, CH*CH*₃), 1.06–1.18 (m, 3H, OCH₂*CH*₃), 1.24–1.44 (m, 2H, cy), 1.54–1.73 (m, 2H, cy), 1.93–2.06 (m, 1H, cy), 2.27–2.36 (m, 1H, cy), 2.41–2.53 (m, 1H, cy), 4.06–4.22 (m, 2H, O*CH*₂CH₃), 4.97 (br s, 1H, NH), 5.68 (br s, 2H, NH₂), 6.50 (s, 1H, NH), 7.35 (d, 2H, ³*J*=9.2 Hz, Ar), 7.66 (d, 2H, ³*J*=9.2 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 13.6 (q), 21.3 (q), 26.7 (d), 27.0 (t), 29.2 (t), 37.2 (t), 61.9 (t), 66.4 (s), 95.4 (s), 128.7 (d), 129.0 (d), 131.3 (s), 137.8 (s), 160.9 (s), 161.4 (s), 171.6 (s); MS (EI) *m*/*z* (%) 338 (15), 336 (38), 323 (34), 321 (90), 294 (13), 292 (36), 266 (23), 264 (64), 223 (26), 221 (71), 184 (100), 151 (61). Anal. Calcd for C₁₈H₂₃ClN₄O₃S: C, 52.61; H, 5.64; N, 13.63. Found: C, 52.53; H, 5.68; N, 13.71.

4.3.12. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-5-methyl-2-(2-methyl-1,3-thiazol-4-yl)-3a,4,5,6,7,7a-hexahydro-1,3benzothiazole-7a-carboxylate (**9**1)

Colourless powder, mp 97–99 °C; IR (Nujol) ν_{max} 3458, 3384, 3251, 3134, 1717, 1703, 1625 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.92 (d, 3H, ³*J*=6.4 Hz, CH*CH*₃), 1.24 (t, 3H, ³*J*=6.4 Hz, OCH₂*CH*₃), 1.33–1.42 (m, 1H, cy), 1.55–1.71 (m, 2H, cy), 1.84–1.99 (m, 2H, cy), 2.26–2.35 (m, 1H, cy), 2.41–2.51 (m, 1H, cy), 2.73 (s, 3H, N=C*CH*₃), 4.10–4.20 (m, 2H, O*CH*₂CH₃), 4.81 (br s, 1H, NH), 5.76 (br s, 2H, NH₂), 6.36 (br s, 1H, NH), 7.81 (br s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 13.7 (q), 19.08 (q), 21.3 (q), 26.6 (d), 27.0 (t), 29.2 (t), 37.4 (t), 62.0 (t), 65.4

(s), 95.2 (s), 120.0 (d), 148.2 (s), 158.7 (s), 160.8 (s), 166.6 (s), 171.7 (s); MS (EI) m/z (%) 396 (1) [M⁺-1], 323 (100), 308 (4), 279 (15), 264 (1), 251 (100), 224 (3), 210 (12), 184 (10), 167 (5). Anal. Calcd for $C_{16}H_{23}N_5O_3S_2$: C, 48.35; H, 5.83; N, 17.62. Found: C, 48.33; H, 5.88; N, 17.57.

4.3.13. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-5-methyl-2-(pyridyl)-3a,4,5,6,7,7a-hexahydro-1,3-benzothiazole-7acarboxylate (**9m**)

Colourless powder, mp 112–114 °C; IR (Nujol) ν_{max} 3453, 3261, 3143, 1718, 1701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.86 (d, 3H, ³*J*=6.4 Hz, CHC*H*₃), 1.14–1.21 (m, 3H, OCH₂C*H*₃), 1.32–1.42 (m, 1H, cy), 1.55–1.73 (m, 2H, cy), 1.89–1.99 (m, 2H, cy), 2.26–2.35 (m, 1H, cy), 2.39–2.49 (m, 1H, cy), 4.00–4.16 (m, 2H, OC*H*₂CH₃), 5.71 and 5.76 (2br s, 3H, NH₂ and NH), 6.58 (s, 1H, NH), 7.54 (d, 2H, ³*J*=4.4 Hz, Ar), 8.65 (d, 2H, ³*J*=4.4 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 13.6 (q), 21.2 (q), 26.5 (d), 26.9 (t), 29.2 (t), 37.0 (t), 62.0 (t), 66.7 (s), 95.7 (s), 121.3 (d), 139.8 (d), 150.1 (s), 160.8 (s), 161.1 (s), 171.4 (s); MS (EI) *m/z* (%) 377 (4) [M⁺], 348 (19), 332 (28), 304 (100), 287 (17), 260 (39), 231 (56), 210 (11), 183 (23), 152 (4). Anal. Calcd for C₁₇H₂₃N₅O₃S: C, 54.10; H, 6.14; N, 18.55. Found: C, 54.03; H, 6.19; N, 18.58.

4.3.14. Methyl 3a-[2-(aminocarbonyl)hydrazino]-2-phenyl-4,5,6,7,8,8a-hexahydro-3aH-cyclohepta[d][1,3]thiazoline-8a-carboxylate (**9n**)

Colourless powder, mp 149–152 °C; IR (Nujol) ν_{max} 3465, 3318, 3262, 3196, 1724, 1678 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.03–1.12 (m, 1H, cy), 1.27–1.38 (m, 1H, cy), 1.56–1.73 (m, 4H, cy), 1.91–2.02 (m, 1H, cy), 2.07–2.15 (m, 1H, cy), 2.30–2.42 (m, 2H, cy), 3.72 (s, 3H, OCH₃), 5.25 and 5.74 (2br s, 3H, NH₂ and NH), 6.66 (s, 1H, NH), 7.45–7.61 (m, 3H, Ar), 7.83 (d, 2H, ³J=7.6 Hz, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 23.0 (t), 23.1 (t), 30.3 (t), 31.0 (t), 39.8 (t), 53.0 (q), 75.8 (s), 100.5 (s), 128.0 (d), 128.7 (d), 131.7 (d), 132.6 (s), 160.2 (s), 164.7 (s), 171.5 (s); MS (EI) *m*/*z* (%) 363 (1) [M⁺+1], 287 (21), 270 (1), 254 (3), 229 (16), 224 (3), 184 (16), 152 (40), 123 (43), 103 (100). Anal. Calcd for C₁₇H₂₂N₄O₃S: C, 56.43; H, 6.12; N, 15.46.

4.3.15. Methyl 3a-[2-(aminocarbonyl)hydrazino]-2-(4-chlorophenyl)-4,5,6,7,8,8a-hexahydro-3aH-cyclohepta-[d][1,3]thiazoline-8a-carboxylate (**90**)

Colourless powder, mp 139–143 °C; IR (Nujol) ν_{max} 3483, 3347, 3223, 3165, 1738, 1659 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.03–1.14 (m, 1H, cy), 1.30–1.39 (m, 1H, cy), 1.50–1.69 (m, 4H, cy), 1.91–2.02 (m, 1H, cy), 2.09–2.17 (m, 1H, cy), 2.30–2.41 (m, 2H, cy), 3.72 (s, 3H, OCH₃), 5.27 and 5.72 (2br s, 3H, NH₂ and NH), 6.71 (s, 1H, NH), 7.56 (d, 2H, ³J=7.2 Hz, Ar), 7.84 (d, 2H, ³J=7.2 Hz, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 23.8 (t), 31.0 (t), 32.2 (t), 53.7 (q), 76.8 (s), 101.3 (s), 129.4 (d), 130.0 (d), 132.1 (s), 137.1 (s), 161.0 (s), 164.3 (s), 172.1 (s); MS (EI) *m/z* (%) 397 (2) [M⁺+1], 368 (4), 366 (14), 339 (24), 337 (69), 295

(36), 293 (100), 265 (3), 263 (10), 255 (8), 227 (39), 183 (74), 144 (62). Anal. Calcd for $C_{17}H_{21}CIN_4O_3S$: C, 51.45; H, 5.33; N, 14.12. Found: C, 51.38; H, 5.39; N, 14.16.

4.3.16. Methyl 3a-[2-(aminocarbonyl)hydrazino]-2-(2,4-difluorophenyl)-4,5,6,7,8,8a-hexahydro-3aH-cyclohepta-[d][1,3]thiazoline-8a-carboxylate (**9p**)

Colourless powder, mp 108–110 °C; IR (Nujol) ν_{max} 3478, 3272, 1734, 1681, 1641, 1598 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.07–1.15 (m, 1H, cy), 1.25–1.34 (m, 1H, cy), 1.52-1.78 (m, 4H, cy), 1.87-1.97 (m, 1H, cy), 2.01-2.11 (m, 1H, cy), 2.26–2.38 (m, 2H, cy), 3.70 (s, 3H, OCH₃), 5.71 (br s, 3H, NH₂ and NH), 6.70 (br s, 1H, NH), 7.20 (t, 1H, ${}^{3}J=7.6$ Hz, Ar), 7.40 (t, 1H, ${}^{3}J=7.6$ Hz, Ar), 7.96–8.07 (m, 1H, Ar); 13 C NMR (100 MHz, DMSO- d_6) δ 23.0 (t), 23.1 (t), 30.3 (t), 30.9 (t), 39.6 (t), 53.0 (q), 75.6 (s), 98.9 (s), 104.8 (d, ${}^{2}J_{CF}=26.5$ Hz), 112.3 (d, ${}^{2}J_{CF}=22.0$ Hz), 117.3 (s, ${}^{3}J_{CF}=8.3$ Hz), 132.4 (d, ${}^{3}J_{CF}=9.8$ Hz), 159.0 (s), 160.1 (s), 160.5 (s, ${}^{1}J_{CF}=254.2$ Hz, ${}^{3}J_{CF}=12.9$ Hz), 164.1 (s, ${}^{1}J_{CF}=251.1$ Hz, ${}^{3}J_{CF}=12.1$ Hz), 171.4 (s); MS (EI) m/z (%) 323 (40), 265 (38), 211 (7), 184 (36), 139 (100). Anal. Calcd for C₁₇H₂₀F₂N₄O₃S: C, 51.25; H, 5.06; N, 14.06. Found: C, 51.19; H, 5.13; N, 14.12.

4.3.17. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-phenyl-3a,4,5,6,7,8,9,9a-octahydrocycloocta[d][1,3]thiazoline-9acarboxylate (**9q**)

Colourless powder, mp 148–150 °C; IR (Nujol) ν_{max} 3452, 3333, 3251, 3231, 1729, 1684 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.10–1.78 (m, 7H, cy), 1.22 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.86–1.94 (m, 1H, cy), 2.03–2.12 (m, 1H, cy), 2.41–2.55 (m, 3H, cy), 4.10–4.22 (m, 2H, O*CH*₂*CH*₃), 5.25 (s, 1H, NH), 5.38 (br s, 2H, NH₂), 6.66 (br s, 1H, NH), 7.47 (t, 2H, ³*J*=7.6 Hz, Ar), 7.54 (t, 1H, ³*J*=7.2 Hz, Ar), 7.82 (d, 2H, ³*J*=7.2 Hz, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.9 (q), 21.8 (t), 23.2 (t), 24.9 (t), 25.8 (t), 30.2 (t), 33.6 (t), 61.7 (t), 75.9 (s), 98.7 (s), 128.0 (d), 128.7 (d), 131.7 (d), 132.9 (s), 160.2 (s), 165.3 (s), 170.9 (s); MS (EI) *m/z* (%) 390 (9) [M⁺], 361 (53), 345 (79), 317 (100), 301 (38), 273 (56), 244 (31), 224 (75), 196 (38), 166 (63). Anal. Calcd for C₁₉H₂₆N₄O₃S: C, 58.44; H, 6.71; N, 14.35. Found: C, 58.51; H, 6.76; N, 14.27.

4.3.18. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(4-methoxyphenyl)-3a,4,5,6,7,8,9,9a-octahydrocycloocta[d][1,3]thiazoline-9a-carboxylate (**9r**)

Colourless powder, mp 164–166 °C; IR (Nujol) ν_{max} 3432, 3268, 3204, 1737, 1678 cm⁻¹; ¹H NMR (400 MHz, DMSO d_6) δ 1.13–1.24 (m, 1H, cy), 1.28 (t, 3H, ³J=7.2 Hz, OCH₂CH₃), 1.30–1.70 (m, 6H, cy), 1.91–2.02 (m, 1H, cy), 2.10–2.22 (m, 1H, cy), 2.46–2.58 (m, 3H, cy), 3.88 (s, 3H, OCH₃), 4.19–4.27 (m, 2H, OCH₂CH₃), 5.26 (s, 1H, NH), 5.71 (br s, 2H, NH₂), 6.71 (br s, 1H, NH), 7.09 (d, 2H, ³J=8.8 Hz, Ar), 7.85 (d, 2H, ³J=8.8 Hz, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 14.5 (q), 22.5 (t), 23.9 (t), 25.6 (t), 26.5 (t), 30.3 (t), 34.4 (t), 56.2 (q), 62.4 (t), 76.4 (s), 99.2 (s), 114.7 (d), 126.2 (s), 130.5 (d), 160.9 (s), 162.7 (s), 165.2 (s), 171.7 (s); MS (EI) m/z (%) 420 (4) [M⁺], 397 (14), 375 (57), 347 (100), 331 (47), 303 (25), 271 (81), 177 (58). Anal. Calcd for C₂₀H₂₈N₄O₄S: C, 57.12; H, 6.71; N, 13.32. Found: C, 57.23; H, 6.72; N, 13.21.

4.3.19. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(4-chlorophenyl)-3a,4,5,6,7,8,9,9a-octahydrocycloocta[d][1,3]thiazoline-9a-carboxylate (**9**s)

Colourless powder, mp 160–162 °C with decomposition; IR (Nujol) ν_{max} 3465, 3395, 3255, 3124, 1725, 1708, 1590 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.07–1.16 (m, 1H, cy), 1.23 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.29–1.74 (m, 6H, cy), 1.86–1.94 (m, 1H, cy), 2.01–2.12 (m, 1H, cy), 2.40–2.51 (m, 3H, cy), 4.10–4.24 (m, 2H, OCH₂CH₃), 5.27 (s, 1H, NH), 5.72 (br s, 2H, NH₂), 6.73 (br s, 1H, NH), 7.54 (d, 2H, ³*J*=8.0 Hz, Ar), 7.84 (d, 2H, ³*J*=8.0 Hz, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.8 (q), 21.8 (t), 23.3 (t), 24.9 (t), 25.8 (t), 30.1 (t), 34.6 (t), 61.8 (t), 76.3 (s), 98.8 (s), 128.8 (d), 129.8 (d), 131.7 (s), 136.5 (s), 160.2 (s), 164.2 (s), 170.8 (s); MS (EI) *m/z* (%) 422 (2) [M⁺–2], 276 (3), 274 (10), 224 (2), 222 (6), 198 (17), 166 (100). Anal. Calcd for C₁₉H₂₅ClN₄O₃S: C, 53.70; H, 5.93; N, 13.18. Found: C, 53.79; H, 5.86; N, 13.13.

4.3.20. Ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(2,4-difluorophenyl)-3a,4,5,6,7,8,9,9a-octahydrocycloocta-[d][1,3]thiazoline-9a-carboxylate (**9**t)

Colourless powder, mp 171–174 °C with decomposition; IR (Nujol) ν_{max} 3434, 3206, 3116, 1728, 1696 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.10–1.20 (m, 1H, cy), 1.22 (t, 3H, ${}^{3}J=7.2$ Hz, OCH₂CH₃), 1.25–1.73 (m, 6H, cy), 1.84-1.93 (m, 1H, cy), 2.01-2.11 (m, 1H, cy), 2.40-2.49 (m, 3H, cy), 4.09-4.20 (m, 2H, OCH₂CH₃), 5.30 (s, 1H, NH), 5.73 (br s, 2H, NH₂), 6.70 (br s, 1H, NH), 7.22 (t, 1H, ${}^{3}J=8.0$ Hz, Ar), 7.40 (t, 1H, ${}^{3}J=7.6$ Hz, Ar), 8.00-8.10 (m, 1H, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.8 (q), 21.8 (t), 23.2 (t), 25.0 (t), 25.8 (t), 30.0 (t), 33.5 (t), 61.8 (t), 75.6 (s), 97.1 (s), 104.8 (d, ${}^{2}J_{CF}=25.8$ Hz), 112.3 (d, ${}^{2}J_{\rm CF}$ =20.5 Hz), 117.7 (s, ${}^{3}J_{\rm CF}$ =9.3 Hz), 132.4 (s), 159.5 (s), 160.2 (s), 160.5 (s, ${}^{1}J_{CF}=254.1$ Hz, ${}^{3}J_{CF}=12.8$ Hz), 164.0 (s, ${}^{1}J_{CF}$ =250.4 Hz, ${}^{3}J_{CF}$ =12.2 Hz), 170.8 (s); MS (EI) *m/z* (%) 426 (14) [M⁺], 396 (45), 381 (86), 331 (100), 309 (12), 280 (5), 167 (14). Anal. Calcd for C₁₉H₂₄F₂N₄O₃S: C, 53.51; H, 5.67; N, 13.14. Found: C, 53.64; H, 5.73; N, 13.11.

4.4. General procedure for the synthesis of 6-thia-2,3,8triaza-tricyclo[3.3.3.0^{1,5}]undec-7-en-4-ones **11a,b**, 10-thia-7,8,12-triaza-tricyclo[4.3.3.0^{1,6}]dodec-11-en-9-ones **11c-g** and 12-thia-9,10,14-triaza-tricyclo[6.3.3.0^{1,8}]tetradec-13-en-11-ones **11h-j**

To a magnetically stirred solution of aryl-4,5,6,6a-tetrahydro-3a*H*-cyclopenta[*d*][1,3]thiazolines **9c,d** (1.0 mmol), or aryl-3a,4,5,6,7,7a-hexahydro-1,3-benzothiazolines **9e–h,j** (1.0 mmol) or aryl-3a,4,5,6,7,8,9,9a-octahydrocycloocta[*d*][1,3]thiazolines **9q–s** (1.0 mmol) in tetrahydrofuran (30 mL) a stoichiometric amount of sodium hydride (1.0 mmol) was added at room temperature. The reaction easily took place (0.5-1.0 min) at room temperature (monitored by TLC chromatography). Then, on the disappearance of **9**, 2 equiv of Amberlyst 15H was added under magnetic stirring to the crude and the reaction was allowed to stand at room temperature for 2 min. The mixture was filtered and the solvent was evaporated under reduced pressure. The products **11a**–**j** were obtained pure by chromatography on silica gel column (elution mixtures: ethyl acetate–cyclohexane).

4.4.1. 7-(4-Methoxyphenyl)-6-thia-2,3,8-triaza-tricyclo-[3.3.3.0^{1,5}]undec-7-en-4-one (**11a**)

Colourless oil; IR (Nujol) ν_{max} 3426, 3257, 3143, 1694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.81–1.91 (m, 2H, cy), 2.19–2.24 (m, 2H, cy), 2.44–2.48 (m, 1H, cy), 2.65–2.70 (m, 1H, cy), 3.85 (s, 3H, OCH₃), 4.90 (br s, 1H, NH), 6.90 (d, 2H, ³*J*=8.8 Hz, Ar), 7.77 (d, 2H, ³*J*=8.8 Hz, Ar), 8.12 (br s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 24.5 (t), 29.7 (t), 39.0 (t), 40.4 (q), 55.4 (s), 68.9 (s), 114.0 (s), 124.4 (d), 130.6 (d), 162.9 (s), 168.7 (s), 174.0 (s); MS (EI) *m/z* (%) 289 (66) [M⁺], 261 (47), 229 (42), 182 (100), 154 (16), 124 (32). Anal. Calcd for C₁₄H₁₅N₃O₂S: C, 58.11; H, 5.22; N, 14.52. Found: C, 58.03; H, 5.29; N, 14.43.

4.4.2. 7-(4-Trifluoromethyl-phenyl)-6-thia-2,3,8-triazatricyclo[3.3.3.0^{1,5}]undec-7-en-4-one (**11b**)

Colourless oil; IR (Nujol) ν_{max} 3443, 3324, 3232, 3157, 1697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.76–2.05 (m, 2H, cy), 2.17–2.32 (m, 2H, cy), 2.53–2.59 (m, 1H, cy), 2.69–2.76 (m, 1H, cy), 4.77 (br s, 1H, NH), 7.68 (d, 2H, ³*J*=8.4 Hz, Ar), 7.93 (d, 2H, ³*J*=8.4 Hz, Ar), 8.31 (br s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 24.6 (t), 27.0 (t), 39.3 (t), 61.4 (s), 69.6 (s), 123.8 (s, ¹*J*_{CF}=271.0 Hz), 125.9 (d, ³*J*_{CF}=3.8 Hz), 129.3 (d), 134.0 (s, ²*J*_{CF}=32.6 Hz), 135.4 (s), 168.1 (s), 173.8 (s); MS (EI) *m*/*z* (%) 327 (100) [M⁺], 298 (47), 269 (35), 181 (86), 154 (24), 124 (36). Anal. Calcd for C₁₄H₁₂F₃N₃OS: C, 51.37; H, 3.70; N, 12.84. Found: C, 51.29; H, 3.75; N, 12.90.

4.4.3. 11-Phenyl-10-thia-7,8,12-triaza-tricyclo-

[4.3.3.0^{1,6}]dodec-11-en-9-one (**11c**)

Colourless oil; IR (Nujol) ν_{max} 3428, 3219, 3160, 1687 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.37–1.56 (m, 3H, cy), 1.59–1.66 (m, 1H, cy), 1.86–1.93 (m, 1H, cy), 1.98–2.04 (m, 1H, cy), 2.06–2.22 (m, 2H, cy), 5.92 (br s, 1H, NH), 6.21 (br s, 1H, NH), 7.47 (dt, 2H, ³*J*=8.0 Hz, ⁴*J*=1.6 Hz, Ar), 7.51 (dt, 1H, ³*J*=7.2 Hz, ⁴*J*=1.4 Hz, Ar), 7.84 (dt, 2H, ³*J*=7.2 Hz, ⁴*J*=1.6 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 20.1 (t), 20.5 (t), 28.7 (t), 31.0 (t), 63.7 (s), 99.0 (s), 128.6 (d), 129.0 (d), 131.8 (d), 132.4 (s), 169.4 (s), 175.3 (s); MS (EI) *m*/*z* (%) 273 (91) [M⁺], 245 (58), 215 (72), 195 (100), 167 (42), 139 (13). Anal. Calcd for C₁₄H₁₅N₃OS: C, 61.51; H, 5.53; N, 15.37. Found: C, 61.59; H, 5.44; N, 15.29.

4.4.4.11-(4-Methoxy-phenyl)-10-thia-7,8,12-triaza-tricyclo-[4.3.3.0^{1,6}]dodec-11-en-9-one (**11d**)

Colourless oil; IR (Nujol) ν_{max} 3443, 3354, 3232, 3178, 1693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 1.15–1.31 (m,

2H, cy), 1.43–1.71 (m, 3H, cy), 1.91–2.20 (m, 3H, cy), 3.85 (s, 3H, OCH₃), 5.21 (br s, 1H, NH), 6.91 (d, 2H, ${}^{3}J$ =7.2 Hz, Ar), 7.83 (d, 2H, ${}^{3}J$ =7.2 Hz, Ar), 8.79 (br s, 1H, NH); 13 C NMR (100 MHz, CDCl₃) δ 20.3 (t), 20.7 (t), 29.1 (t), 31.3 (t), 55.5 (q), 63.6 (s), 98.9 (s), 114.0 (d), 124.4 (s), 130.6 (d), 136.1 (s), 169.2 (s), 175.4 (s); MS (EI) *m*/*z* (%) 303 (69) [M⁺], 275 (38), 244 (21), 196 (100), 169 (72), 138 (66). Anal. Calcd for C₁₅H₁₇N₃O₂S: C, 59.39; H, 5.65; N, 13.85. Found: C, 59.47; H, 5.71; N, 13.77.

4.4.5. 11-(4-Chloro-phenyl)-10-thia-7,8,12-triaza-tricyclo-[4.3.3.0^{1,6}]dodec-11-en-9-one (**11e**)

Colourless oil; IR (Nujol) ν_{max} 3426, 3211, 3154, 1703, 1649 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.45–1.66 (m, 4H, cy), 1.81–1.88 (m, 1H, cy), 1.95–2.05 (m, 1H, cy), 2.05–2.24 (m, 2H, cy), 5.17 (br s, 1H, NH), 7.40 (d, 2H, ³*J*=7.8 Hz, Ar), 7.78 (d, 2H, ³*J*=7.8 Hz, Ar), 9.02 (br s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 20.0 (t), 20.5 (t), 28.6 (t), 31.0 (t), 64.0 (s), 99.2 (s), 128.9 (d), 129.8 (d), 130.4 (s), 138.6 (s), 167.9 (s), 175.4 (s); MS (EI) *m/z* (%) 309 (16) [M⁺+2], 307 (46) [M⁺], 281 (2), 283 (8), 250 (16), 248 (46), 196 (100), 168 (39), 167 (54). Anal. Calcd for C₁₄H₁₄ClN₃OS: C, 54.63; H, 4.58; N, 13.65. Found: C, 54.71; H, 4.52; N, 13.71.

4.4.6. 11-(2,4-Difluoro-phenyl)10-thia-7,8,12-triazatricyclo[4.3.3.0^{1,6}]dodec-11-en-9-one (**11f**)

Colourless oil; IR (Nujol) ν_{max} 3428, 3369, 3219, 3160, 1687 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.40–1.63 (m, 4H, cy), 1.69–1.75 (m, 1H, cy), 1.85–1.91 (m, 1H, cy), 2.09–2.21 (m, 2H, cy), 5.12 (br s, 1H, NH), 6.81–6.92 (m, 2H, Ar), 7.90–7.98 (m, 1H, Ar), 8.01 (br s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 19.8 (t), 20.2 (t), 28.0 (t), 30.8 (t), 63.2 (s), 97.6 (s), 104.5 (d, ²J_{CF}=25.8 Hz), 111.9 (d, ²J_{CF}=21.3 Hz), 116.8 (s, ²J_{CF}=10.6 Hz), 132.0 (d, ³J_{CF}=10.7 Hz), 161.2 (s, ¹J_{CF}=245.0 Hz, ³J_{CF}=12.2 Hz), 162.1 (s), 164.9 (s, ¹J_{CF}=254.0 Hz, ³J_{CF}=12.2 Hz), 175.4 (s); MS (EI) *m*/*z* (%) 309 (100) [M⁺], 281 (43), 231 (57), 195 (100), 137 (21). Anal. Calcd for C₁₄H₁₃F₂N₃OS: C, 54.36; H, 4.24; N, 13.58. Found: C, 54.29; H, 4.21; N, 13.65.

4.4.7. 4-Methyl-11-phenyl-10-thia-7,8,12-triaza-tricyclo-[4.3.3.0^{1,6}]dodec-11-en-9-one (**11g**)

Colourless oil; IR (Nujol) ν_{max} 3430, 3394, 3256, 3104, 1683 cm⁻¹; ¹H NMR (CDCl₃) δ 0.96 (d, 3H, ³*J*=6.4 Hz, CH*CH*₃), 1.08–1.29 (m, 2H, cy), 1.46–1.52 (m, 1H, cy), 1.67–1.72 (m, 2H, cy), 2.22 (d, 1H, ³*J*=14.4 Hz, cy), 2.45 (d, 1H, ³*J*=11.6 Hz, cy), 4.90 (br s, 1H, NH), 7.40 (t, 2H, ³*J*=7.6 Hz, Ar), 7.46 (t, 1H, ³*J*=7.6 Hz, Ar), 7.82 (d, 2H, ³*J*=7.2 Hz, Ar), 8.62 (br s, 1H, NH); ¹³C NMR (CDCl₃) δ 21.5 (q), 26.9 (t), 27.2 (d), 28.1 (t), 38.9 (t), 63.0 (s), 99.5 (s), 128.4 (d), 128.5 (d), 132.0 (d), 132.2 (s), 166.0 (s), 176.1 (s); MS (EI) *m*/*z* (%) 287 (100) [M⁺], 231 (18), 211 (3). Anal. Calcd for C₁₅H₁₇N₃OS: C, 62.69; H, 5.96; N, 14.62. Found: C, 62.60; H, 5.91; N, 14.67.

4.4.8. 13-Phenyl-12-thia-9,10,14-triaza-tricyclo-[6.3.3.0^{1,8}]tetradec-13-en-11-one (**11h**)

Colourless oil; IR (Nujol) ν_{max} 3445, 3234, 3168, 1701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.26–1.46 (m, 4H, cy), 1.52–1.83 (m, 4H, cy), 1.97–2.09 (m, 2H, cy), 2.26–2.33 (m, 1H, cy), 2.41–2.47 (m, 1H, cy), 5.20 (br s, 1H, NH), 7.43 (t, 2H, ³*J*=7.2 Hz, Ar), 7.51 (t, 1H, ³*J*=7.2 Hz, Ar), 7.43 (t, 2H, ³*J*=8.0 Hz, Ar), 8.1 (br s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 23.0 (t), 25.0 (t), 25.4 (t), 28.3 (t), 29.7 (t), 32.8 (t), 69.8 (s), 104.1 (s), 128.5 (d), 128.6 (d), 132.0 (d), 132.4 (s), 166.7 (s), 177.2 (s); MS (EI) *m/z* (%) 301 (100) [M⁺], 273 (75), 243 (92), 223 (58), 195 (34), 166 (60). Anal. Calcd for C₁₆H₁₉N₃OS: C, 63.76; H, 6.35; N, 13.94. Found: C, 63.82; H, 6.36; N, 13.89.

4.4.9. 13-(4-Methoxy-phenyl)-12-thia-9,10,14-triazatricyclo[6.3.3.0^{1,8}]tetradec-13-en-11-one (**11i**)

Colourless oil; IR (Nujol) ν_{max} 3424, 3356, 3224, 3176, 1694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.26–1.36 (m, 3H, cy), 1.48–1.82 (m, 3H, cy), 2.03–2.16 (m, 2H, cy), 2.21–2.31 (m, 2H, cy), 2.35–2.41 (m, 1H, cy), 2.45–2.56 (m, 1H, cy), 3.86 (s, 3H, OCH₃), 5.13 (br s, 1H, NH), 6.92 (d, 2H, ³J=6.8 Hz, Ar), 7.77 (d, 2H, ³J=6.8 Hz, Ar), 8.41 (br s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 23.1 (t), 25.1 (t), 25.5 (t), 27.1 (t), 29.1 (t), 32.6 (t), 55.2 (q), 70.3 (s), 102.3 (s), 114.1 (d), 125.7 (s), 129.8 (d), 160.3 (s), 167.6 (d), 178.3 (s); MS (EI) *m*/*z* (%) 331 (84) [M⁺], 303 (54), 273 (100), 195 (53), 165 (37). Anal. Calcd for C₁₇H₂₁N₃O₂S: C, 61.61; H, 6.39; N, 12.68. Found: C, 61.71; H, 6.32; N, 12.73.

4.4.10. 13-(4-Chloro-phenyl)-12-thia-9,10,14-triazatricyclo[6.3.3.0^{1,8}]tetradec-13-en-11-one (**11**j)

Colourless oil; IR (Nujol) ν_{max} 3431, 3232, 3143, 1698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.26–1.35 (m, 2H, cy), 1.46–1.58 (m, 2H, cy), 1.59–1.70 (m, 2H, cy), 1.71–1.81 (m, 2H, cy), 1.95–2.05 (m, 2H, cy), 2.24–2.28 (m, 1H, cy), 2.40–2.44 (m, 1H, cy), 4.58 (br s, 1H, NH), 7.39 (d, 2H, ³*J*=8.4 Hz, Ar), 7.80 (d, 2H, ³*J*=8.4 Hz, Ar), 7.94 (br s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 22.8 (t), 24.9 (t), 25.3 (t), 26.0 (t), 28.2 (t), 32.5 (t), 70.4 (s), 103.8 (s), 128.8 (d), 129.8 (d), 130.8 (s), 138.2 (s), 165.1 (s), 177.0 (s); MS (EI) *m*/*z* (%) 337 (36) [M⁺+2], 335 (100) [M⁺], 309 (13), 307 (42), 223 (67), 195 (38), 165 (69). Anal. Calcd for C₁₆H₁₈CIN₃OS: C, 57.22; H, 5.40; N, 12.51. Found: C, 57.32; H, 5.46; N, 12.53.

4.5. General procedure for the syntheses of ethyl 1[(4-chlorobenzoyl)thio]-2-iminocycloalkylcarboxylates **12a,b** and ethyl 1[(4-chlorobenzoyl)thio]-2-oxocycloalkylcarboxylates **13a,b**

To a magnetically stirred solution of ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(4-chlorophenyl)-3a,4,5,6,7,7a-hexahydro-1,3benzothiazole-7a-carboxylate **9g** (1.0 mmol) or ethyl 3a-[2-(aminocarbonyl)hydrazino]-2-(4-chlorophenyl)-3a,4,5,6,7,8,9,9a-octahydrocycloocta[*d*][1,3]thiazoline-9a-carboxylate **9s** (1.0 mmol) in acetone—water=9:1 (30 mL) 4 equiv of Amberlyst 15H was added at room temperature. The mixture was allowed to stand at room temperature under magnetic stirring (6.0-15.0 h) until the disappearance of the reagents (monitored by TLC chromatography). The resin was removed by filtration and the reaction solvent was evaporated under reduced pressure. Then the crude was chromatographed on silica gel column (elution mixtures: ethyl acetate—cyclohexane) to obtain pure products **12a,b** and **13a,b** that were crystallized from ethyl acetate—cyclohexane.

4.5.1. Ethyl 1[(4-chlorobenzoyl)thio]-2-iminocyclohexanecarboxylate (12a)

Colourless powder, mp 142–145 °C; IR (Nujol) ν_{max} 3252, 1758, 1738, 1674 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.22–1.30 (m, 3H, OCH₂*CH*₃), 1.84–1.98 (m, 4H, cy), 2.22–2.32 (m, 1H, cy), 2.65–2.78 (m, 3H, cy), 4.17–4.31 (m, 2H, O*CH*₂CH₃), 5.32 (br s, 1H, NH), 7.37 (d, 2H, ³*J*=8.4 Hz, Ar), 7.73 (d, 2H, ³*J*=8.4 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 13.8 (q), 22.2 (t), 26.1 (t), 36.7 (t), 40.4 (t), 62.5 (t), 67.5 (s), 104.4 (s), 128.5 (d), 128.8 (d), 134.4 (s), 140.0 (s), 168.2 (s), 188.4 (s); MS (EI) *m/z* (%) 341 (9) [M⁺+2], 339 (31) [M⁺], 296 (23), 294 (67), 267 (31), 265 (100), 225 (42), 199 (31), 182 (58), 154 (26). Anal. Calcd for C₁₆H₁₈CINO₃S: C, 56.55; H, 5.34; N, 4.12. Found: C, 56.43; H, 5.39; N, 4.23.

4.5.2. Ethyl 1[(4-chlorobenzoyl)thio]-2-iminocyclooctanecarboxylate (12b)

Colourless powder, mp 151–154 °C; IR (Nujol) ν_{max} 3247, 1765, 1724, 1658 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.22–1.35 (m, 3H, OCH₂*CH*₃), 1.40–1.50 (m, 2H, cy), 1.54–1.64 (m, 2H, cy), 1.67–1.75 (m, 3H, cy), 1.87–1.94 (m, 1H, cy), 2.06–2.13 (m, 1H, cy), 2.20–2.30 (m, 2H, cy), 2.50–2.59 (m, 1H, cy), 4.17–4.32 (m, 2H, OCH₂CH₃), 5.04 (br s, 1H, NH), 7.37 (d, 2H, ³*J*=8.4 Hz, Ar), 7.73 (d, 2H, ³*J*=8.4 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 13.9 (q), 22.8 (t), 23.1 (t), 24.4 (t), 25.7 (t), 29.1 (t), 34.7 (t), 62.1 (t), 71.2 (s), 107.8 (s), 128.7 (d), 129.3 (d), 131.2 (s), 137.9 (s), 161.8 (s), 173.0 (s); MS (EI) *m/z* (%) 369 (13) [M⁺+2], 367 (43) [M⁺], 340 (9), 338 (32), 322 (56), 295 (27), 293 (100), 183 (7), 168 (4). Anal. Calcd for C₁₈H₂₂ClNO₃S: C, 58.77; H, 6.03; N, 3.81. Found: C, 58.61; H, 5.96; N, 3.77.

4.5.3. Ethyl 1[(4-chlorobenzoyl)thio]-2-oxocyclohexanecarboxylate (**13a**)

Colourless powder, mp 127–129 °C; IR (Nujol) ν_{max} 1756, 1725, 1713, 1628 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.24 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.84–1.99 (m, 4H, cy), 2.27–2.29 (m, 1H, cy), 2.65–2.76 (m, 3H, cy), 4.23 (q, 2H, ³*J*=7.2 Hz, O*CH*₂CH₃), 7.38 (d, 2H, ³*J*=8.4 Hz, Ar), 7.81 (d, 2H, ³*J*=8.4 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 13.8 (q), 22.2 (t), 26.1 (t), 36.7 (t), 40.4 (t), 62.5 (t), 67.5 (s), 128.5 (d), 128.8 (d), 134.4 (s), 140.0 (s), 168.2 (s), 188.4 (s), 201.0 (s); MS (EI) *m*/*z* (%) 342 (2) [M⁺+2], 340 (9) [M⁺], 156 (6), 139 (100), 127 (3). Anal. Calcd for C₁₆H₁₇ClO₄S: C, 56.38; H, 5.03; S, 9.41. Found: C, 56.41; H, 5.12; S, 9.50.

4.5.4. Ethyl 1[(4-chlorobenzoyl)thio]-2-oxocyclooctanecarboxylate (**13b**)

Colourless powder, mp 118–121 °C; IR (Nujol) ν_{max} 3198, 1746, 1731, 1647 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.86–0.92 (m, 1H, cy), 1.19 (t, 3H, ³*J*=7.2 Hz, OCH₂*CH*₃), 1.17–1.25 (m, 2H, cy), 1.55–1.80 (m, 3H, cy), 2.00–2.07 (m, 2H, cy), 2.31–2.44 (m, 2H, cy), 2.71–2.81 (m, 2H, cy), 4.14 (t, 2H, ³*J*=7.2 Hz, OCH₂CH₃), 7.31 (d, 2H, ³*J*=8.4 Hz, Ar), 7.64 (d, 2H, ³*J*=8.4 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 14.1 (q), 23.7 (t), 25.4 (t), 25.8 (t), 28.8 (t), 38.1 (t), 39.7 (t), 62.1 (t), 67.6 (s), 127.4 (d), 132.0 (d), 133.8 (s), 140.9 (s), 166.2 (s), 189.6 (s), 202.3 (s); MS (EI) *m/z* (%) 370 (29) [M⁺+2], 368 (100) [M⁺], 324 (3), 322 (8), 296 (24), 294 (77), 256 (23), 211 (37), 183 (27), 155 (23). Anal. Calcd for C₁₈H₂₁ClO₄S: C, 58.61; H, 5.74; S, 8.69. Found: C, 58.50; H, 5.69; S, 8.79.

4.6. General procedure for the syntheses of 4-oxo-1thia-3-azaspiro[4.4]non-6-ylidenes **16a–d**, 4-oxo-1thia-3-azaspiro[4.5]dec-6-ylidenes **16e–n**, 4-oxo-1-thia-3azaspiro[4.6]undec-6-ylidenes **16o–q** and 4-oxo-1-thia-3azaspiro[4.7]dodec-6-ylidenes **16r–t**

Cycloalkenyl-1-diazenes 5a-h (1.0 mmol) were added to a magnetically stirred solution of thioureas 14a-c (1.0 mmol) in methanol (4 mL) at room temperature. The reaction was allowed to stand under magnetic stirring at room temperature (0.1–1.5 h) until the disappearance of the reagents (monitored by TLC chromatography). Compounds 16 crystallized directly from the reaction medium and were collected as pure products by filtration.

4.6.1. 2-(2-Imino-4-oxo-1-thia-3-azaspiro[4.4]non-6-yliden)-1-hydrazinecarboxamide (**16a**)

Colourless powder, mp 233–236 °C with decomposition; IR (Nujol) ν_{max} 3457, 3185, 3158, 1728, 1705, 1650, 1586 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.66–1.75 (m, 1H, cy), 2.10–2.17 (m, 2H, cy), 2.30–2.48 (m, 3H, cy), 6.04 (br s, 2H, NH₂), 8.84 (s, 1H, NH), 9.08 (s, 1H, NH), 9.21 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 22.8 (t), 27.9 (t), 38.6 (t), 71.0 (s), 156.1 (s), 156.4 (s), 180.4 (s), 189.0 (s); MS (EI) *m*/*z* (%) 241 (9) [M⁺], 224 (17), 198 (42), 182 (90), 156 (23), 143 (43), 129 (100), 114 (86). Anal. Calcd for C₈H₁₁N₅O₂S: C, 39.83; H, 4.60; N, 29.03. Found: C, 39.76; H, 4.68; N, 29.08.

4.6.2. 2-[3-Methyl-2-(methylimino)-4-oxo-1-thia-3-azaspiro[4.4]non-6-yliden]-1-hydrazinecarboxamide (16b)

Colourless powder, mp 201–204 °C with decomposition; IR (Nujol) ν_{max} 3387, 3191, 1731, 1708, 1653, 1632 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.74–1.81 (m, 1H, cy), 2.01–2.20 (m, 2H, cy), 2.29–2.49 (m, 3H, cy), 3.02 (s, 3H, NCH₃), 3.07 (s, 3H, NCH₃), 6.08 (br s, 2H, NH₂), 9.14 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 22.4 (t), 27.6 (t), 29.3 (q), 38.1 (q), 62.7 (s), 151.7 (s), 155.2 (s), 156.3 (s), 173.7 (s); MS (EI) *m/z* (%) 269 (52) [M⁺], 252 (4), 225 (4), 210 (6), 196 (6), 170 (42), 157 (100), 127 (22), 112 (22). Anal. Calcd for $C_{10}H_{15}N_5O_2S$: C, 44.60; H, 5.61; N, 26.00. Found: C, 44.66; H, 5.65; N, 26.03.

4.6.3. 2-[3-Ethyl-2-(ethylimino)-4-oxo-1-thia-3-azaspiro[4.4]non-6-yliden]-1-hydrazinecarboxamide (**16c**)

Colourless powder, mp 192–193 °C; IR (Nujol) ν_{max} 3392, 3258, 3138, 1720, 1698, 1644 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.08 (t, 3H, ³*J*=7.2 Hz, NCH₂*CH*₃), 1.16 (t, 3H, ³*J*=7.2 Hz, NCH₂*CH*₃), 1.71–1.91 (m, 1H, cy), 2.01– 2.12 (m, 2H, cy), 2.18–2.40 (m, 3H, cy), 3.10 (q, 2H, ³*J*=7.2 Hz, N*CH*₂CH₃), 3.67 (q, 2H, ³*J*=7.2 Hz, N*CH*₂CH₃), 6.06 (br s, 2H, NH₂), 9.36 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 12.3 (q), 15.7 (q), 22.5 (t), 27.6 (t), 37.3 (t), 38.2 (t), 46.3 (t), 62.3 (s), 148.9 (s), 155.8 (s), 156.3 (s), 173.5 (s); MS (EI) *m/z* (%) 297 (67) [M⁺], 280 (1), 253 (4), 238 (12), 224 (6), 198 (38), 185 (100), 157 (15), 112 (20). Anal. Calcd for C₁₂H₁₉N₅O₂S: C, 48.47; H, 6.44; N, 23.55. Found: C, 48.39; H, 6.45; N, 23.42.

4.6.4. tert-Butyl 2-(2-imino-4-oxo-1-thia-3-azaspiro[4.4]non-6-yliden)-1-hydrazinecarboxylate (**16d**)

Colourless powder, mp 167–169 °C with decomposition; IR (Nujol) ν_{max} 3429, 3203, 3136, 1724, 1711, 1685, 1594 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.42 (s, 9H, C(CH₃)₃), 1.72–1.81 (m, 1H, cy), 2.16–2.28 (m, 2H, cy), 2.38–2.44 (m, 2H, cy), 2.45–2.60 (m, 1H, cy), 5.07 (br s, 1H, NH), 8.13 (br s, 1H, NH), 8.80 (br s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 23.2 (t), 27.7 (t), 28.2 (q), 39.3 (t), 70.5 (s), 81.2 (s), 153.1 (s), 159.6 (s), 181.5 (s), 189.9 (s); MS (EI) *m/z* (%) 298 (2) [M⁺], 242 (100), 225 (35), 198 (65), 182 (41), 169 (44), 156 (16), 129 (100), 114 (87). Anal. Calcd for C₁₂H₁₈N₄O₃S: C, 48.31; H, 6.08; N, 18.78. Found: C, 48.28; H, 6.11; N, 18.84.

4.6.5. 2-(2-Imino-4-oxo-1-thia-3-azaspiro[4.5]dec-6yliden)-1-hydrazinecarboxamide (16e)

Colourless powder, mp 186–189 °C with decomposition; IR (Nujol) ν_{max} 3404, 3216, 3176, 1735, 1712, 1675 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.34–1.40 (m, 2H, cy), 1.75–1.97 (m, 4H, cy), 2.17–2.27 (m, 1H, cy), 2.95–3.06 (m, 1H, cy), 5.69 and 6.39 (2br s, 2H, NH₂), 8.73 (s, 1H, NH), 8.95 (s, 1H, NH), 9.54 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 23.8 (t), 24.0 (t), 25.3 (t), 37.1 (t), 72.9 (s), 149.0 (s), 157.2 (s), 179.9 (s), 187.9 (s); MS (EI) *m*/*z* (%) 256 (3) [M⁺+1], 226 (14), 167 (22), 153 (100), 111 (77). Anal. Calcd for C₉H₁₃N₅O₂S: C, 42.34; H, 5.13; N, 27.43. Found: C, 42.26; H, 5.06; N, 27.49.

4.6.6. 2-[3-Methyl-2-(methylimino)-4-oxo-1-thia-3-azaspiro[4.5]dec-6-yliden]-1-hydrazinecarboxamide (16f)

Colourless powder, mp 191–194 °C with decomposition; IR (Nujol) ν_{max} 3465, 3244, 3191, 3142, 1722, 1696, 1652 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.39–1.48 (m, 2H, cy), 1.81–2.10 (m, 4H, cy), 2.29–2.38 (m, 1H, cy), 2.95–3.03 (m, 1H, cy), 3.04 (s, 3H, NCH₃), 3.10 (s, 3H, NCH₃), 5.94 (br s, 2H, NH₂), 9.48 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO*d*₆) δ 22.2 (t), 23.7 (t), 24.1 (t), 29.0 (q), 36.5 (t), 38.3 (q), 63.6 (s), 148.2 (s), 151.0 (s), 156.9 (s), 173.0 (s); MS (EI) *m/z* (%) 283 (21) [M⁺], 266 (13), 240 (2), 224 (96), 210 (9), 170 (7), 157 (100), 141 (14). Anal. Calcd for $C_{11}H_{17}N_5O_2S$: C, 46.63; H, 6.05; N, 24.72. Found: C, 46.67; H, 6.09; N, 24.68.

4.6.7. 2-[3-Ethyl-2-(ethylimino)-4-oxo-1-thia-3-azaspiro[4.5]dec-6-yliden]-1-hydrazinecarboxamide (**16g**)

Colourless powder, mp 200–202 °C; IR (Nujol) ν_{max} 3436, 3165, 1713, 1703, 1643, 1591 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 1.09 (t, 3H, ³*J*=7.2 Hz, NCH₂*CH*₃), 1.15 (t, 3H, ³*J*=7.2 Hz, NCH₂*CH*₃), 1.15 (t, 3H, ³*J*=7.2 Hz, NCH₂*CH*₃), 1.39–1.48 (m, 2H, cy), 1.79–2.06 (m, 4H, cy), 2.27–2.38 (m, 1H, cy), 3.01 (d, 1H, ³*J*=15.6 Hz, cy), 3.14–3.28 (m, 2H, N*CH*₂CH₃), 3.69 (q, 2H, ³*J*=7.2 Hz, N*CH*₂CH₃), 5.84 and 6.17 (2br s, 2H, NH₂), 9.59 (s, 1H, NH); ¹³C NMR (DMSO-*d*₆) δ 12.4 (q), 15.8 (q), 22.2 (t), 23.7 (t), 24.1 (t), 36.4 (t), 37.1 (t), 46.3 (t), 63.2 (s), 148.2 (s), 148.5 (s), 156.9 (s), 172.6 (s); MS (EI) *m/z* (%) 311 (25) [M⁺], 294 (9), 252 (100), 238 (5), 153 (2), 110 (11). Anal. Calcd for C₁₃H₂₁N₅O₂S: C, 50.14; H, 6.80; N, 22.49. Found: C, 50.19; H, 6.75; N, 22.55.

4.6.8. tert-Butyl 2-[3-methyl-2-(methylimino)-4-oxo-1-thia-3-azaspiro[4.5]dec-6-yliden]-1-hydrazinecarboxylate (16h)

Colourless powder, mp 152–154 °C; IR (Nujol) ν_{max} 3296, 3175, 1718, 1704, 1678, 1629 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.45 (s, 9H, C(CH₃)₃), 1.54–1.63 (m, 2H, cy), 1.97–2.14 (m, 4H, cy), 2.52–2.59 (m, 1H, cy), 2.74–2.81 (m, 1H, cy), 3.10 (s, 3H, NCH₃), 3.20 (s, 3H, NCH₃), 7.98 (br s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 22.5 (t), 23.6 (t), 23.9 (t), 28.1 (t), 29.2 (q), 37.0 (q), 38.6 (q), 63.4 (s), 81.2 (s), 150.8 (s), 151.8 (s), 152.9 (s), 173.4 (s); MS (EI) *m/z* (%) 341 (1) [M⁺+1], 284 (56), 267 (4), 240 (3), 224 (20), 211 (9), 184 (4), 170 (7), 157 (100), 116 (13). Anal. Calcd for C₁₅H₂₄N₄O₃S: C, 52.92; H, 7.11; N, 16.46. Found: C, 52.86; H, 7.14; N, 16.40.

4.6.9. N1-Phenyl-2-(2-imino-4-oxo-1-thia-3-azaspiro[4.5]dec-6-yliden)-1-hydrazinecarboxamide (16i)

Colourless powder, mp 196–198 °C with decomposition; IR (Nujol) ν_{max} 3405, 3206, 3163, 1732, 1716, 1637, 1564 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.39–1.50 (m, 2H, cy), 1.79–2.03 (m, 4H, cy), 2.23–2.34 (m, 1H, cy), 3.00–3.07 (m, 1H, cy), 7.02 (t, 1H, ³*J*=7.2 Hz, Ar), 7.33 (d, 2H, ³*J*=7.2 Hz, Ar), 7.38 (d, 2H, ³*J*=7.6 Hz, Ar), 8.28 (s, 1H, NH), 8.81 (s, 1H, NH), 9.07 (s, 1H, NH), 10.14 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 23.9 (t), 25.6 (t), 37.0 (t), 72.9 (s), 118.1 (d), 122.5 (d), 129.0 (d), 138.5 (s), 150.6 (s), 153.2 (s), 179.1 (s), 188.0 (s); MS (EI) *m/z* (%) 331 (1) [M⁺], 284 (1), 256 (12), 212 (21), 196 (17), 182 (14), 153 (81), 129 (64), 119 (100). Anal. Calcd for C₁₅H₁₇N₅O₂S: C, 54.37; H, 5.17; N, 21.13. Found: C, 54.34; H, 5.12; N, 21.15.

4.6.10. N1-Phenyl-2-[3-methyl-2-(methylimino)-4-oxo-1thia-3-azaspiro[4.5]dec-6-yliden]-1-hydrazinecarboxamide (**16***j*)

Colourless powder, mp 206–208 °C; IR (Nujol) ν_{max} 3368, 3188, 1720, 1699, 1646, 1598 cm⁻¹; ¹H NMR (400 MHz,

DMSO- d_6) δ 1.44–1.52 (m, 2H, cy), 1.80–1.93 (m, 2H, cy), 1.98–2.14 (m, 2H, cy), 2.30–2.41 (m, 1H, cy), 3.01–3.12 (m, 1H, cy), 3.04 (s, 3H, NCH₃), 3.18 (s, 3H, NCH₃), 7.03 (t, 1H, ³*J*=7.2 Hz, Ar), 7.32 (t, 2H, ³*J*=7.2 Hz, Ar), 7.40 (d, 2H, ³*J*=7.6 Hz, Ar), 8.10 (s, 1H, NH), 10.17 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 22.2 (t), 23.8 (t), 24.4 (t), 29.1 (q), 36.5 (t), 38.3 (q), 63.7 (s), 118.2 (d), 122.6 (d), 129.0 (d), 138.4 (s), 149.9 (s), 150.8 (s), 153.0 (s), 173.0 (s); MS (EI) *m*/*z* (%) 359 (28) [M⁺], 267 (96), 240 (18), 224 (52), 211 (23), 185 (8), 157 (80). Anal. Calcd for C₁₇H₂₁N₅O₂S: C, 56.81; H, 5.89; N, 19.48. Found: C, 56.78; H, 5.96; N, 19.44.

4.6.11. N1-Phenyl-2-[3-ethyl-2-(ethylimino)-4-oxo-1-thia-3azaspiro[4.5]dec-6-yliden]-1-hydrazinecarboxamide (**16**k)

Colourless powder, mp 186–188 °C; IR (Nujol) ν_{max} 3454, 3179, 1721, 1708, 1664, 1584 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.09–1.20 (m, 6H, 2NCH₂*CH*₃), 1.42–1.51 (m, 2H, cy), 1.81–1.91 (m, 2H, cy), 1.98–2.09 (m, 2H, cy), 2.30–2.40 (m, 1H, cy), 3.01–3.09 (m, 1H, cy), 3.16–3.34 (m, 2H, N*CH*₂CH₃), 3.70–3.82 (m, 2H, N*CH*₂CH₃), 7.02 (t, 1H, ³*J*=7.2 Hz, Ar), 7.31 (t, 2H, ³*J*=7.2 Hz, Ar), 7.38 (d, 2H, ³*J*=7.6 Hz, Ar), 8.05 (s, 1H, NH), 10.16 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 15.5 (q), 15.8 (q), 22.2 (t), 23.8 (t), 24.6 (t), 36.6 (t), 37.3 (t), 46.4 (t), 63.4 (s), 118.3 (d), 122.7 (d), 129.0 (d), 138.3 (s), 148.0 (s), 150.3 (s), 153.0 (s), 172.7 (s); MS (EI) *m*/*z* (%) 387 (27) [M⁺], 295 (100), 266 (12), 252 (37), 239 (19), 185 (42). Anal. Calcd for C₁₉H₂₅N₅O₂S: C, 58.89; H, 6.50; N, 18.07. Found: C, 58.93; H, 6.46; N, 18.00.

4.6.12. 2-(2-Imino-8-methyl-4-oxo-1-thia-3-azaspiro-[4.5]dec-6-yliden)-1-hydrazinecarboxamide (**16**)

Colourless powder, mp 212–215 °C with decomposition; IR (Nujol) ν_{max} 3354, 3162, 3139, 1721, 1698, 1608 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 0.96 (d, 3H, ³*J*=6.4 Hz, CH*CH*₃), 0.98–1.13 (m, 1H, cy), 1.40–1.50 (m, 1H, cy), 1.56–1.63 (m, 1H, cy), 1.85–1.96 (m, 2H, cy), 2.20–2.30 (m, 1H, cy), 3.08–3.17 (m, 1H, cy), 5.60 and 6.17 (2br s, 2H, NH₂), 8.72 (s, 1H, NH), 8.94 (s, 1H, NH), 9.50 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 21.9 (q), 31.1 (q), 32.7 (t), 33.4 (t), 36.6 (t), 72.5 (s), 148.9 (s), 157.1 (s), 178.9 (s), 187.8 (s); MS (EI) *m*/*z* (%) 269 (2) [M⁺], 252 (5), 226 (11), 210 (42), 196 (11), 184 (12), 167 (15), 152 (75), 129 (43), 110 (100). Anal. Calcd for C₁₀H₁₅N₅O₂S: C, 44.60; H, 5.61; N, 26.00. Found: C, 44.27; H, 5.76; N, 26.05.

4.6.13. 2-[3,8-Dimethyl-2-(methylimino)-4-oxo-1-thia-3azaspiro[4.5]dec-6-yliden]-1-hydrazinecarboxamide (**16m**)

Colourless powder, mp 201–203 °C; IR (Nujol) ν_{max} 3419, 3214, 1716, 1703, 1665, 1587 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.96 (d, 3H, ³*J*=6.4 Hz, CH*CH*₃), 1.10–1.21 (m, 1H, cy), 1.51–1.63 (m, 2H, cy), 1.81–1.89 (m, 1H, cy), 2.00–2.09 (m, 1H, cy), 2.29–2.39 (m, 1H, cy), 3.01–3.10 (m, 1H, cy), 3.03 (s, 3H, NCH₃), 3.07 (s, 3H, NCH₃), 5.81 and 6.15 (2br s, 2H, NH₂), 9.55 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 21.8 (q), 29.0 (t), 31.0 (d), 32.0 (q), 36.0 (t), 38.2 (t), 38.3 (q), 63.1 (s), 148.2 (s), 150.9 (s),

156.8 (s), 172.9 (s); MS (EI) m/z (%) 297 (10) [M⁺], 280 (6), 238 (47), 225 (5), 157 (70), 104 (100). Anal. Calcd for $C_{12}H_{19}N_5O_2S$: C, 48.47; H, 6.44; N, 23.55. Found: C, 48.54; H, 6.39; N, 23.61.

4.6.14. 2-[3-Ethyl-2-(ethylimino)-8-methyl-4-oxo-1-thia-3azaspiro[4.5]dec-6-yliden]-1-hydrazinecarboxamide (16n)

Colourless powder, mp 193–196 °C with decomposition; IR (Nujol) ν_{max} 3382, 3246, 3176, 1717, 1704, 1663 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 0.96 (d, 3H, ³*J*=6.0 Hz, CHC*H*₃), 1.01–1.11 (m, 4H, cy and NCH₂C*H*₃), 1.15 (t, 3H, ³*J*=7.6 Hz, NCH₂C*H*₃), 1.50–1.69 (m, 2H, cy), 1.81–1.90 (m, 1H, cy), 1.97–2.05 (m, 1H, cy), 2.26–2.38 (m, 1H, cy), 3.06–3.13 (m, 1H, cy), 3.14–3.30 (m, 2H, NC*H*₂CH₃), 3.70 (q, 2H, ³*J*=7.6 Hz, NC*H*₂CH₃), 5.56 and 6.41 (2br s, 2H, NH₂), 9.58 and 9.63 (2s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 13.1 (q), 16.5 (q), 22.5 (q), 28.8 (t), 31.5 (d), 31.7 (t), 36.6 (t), 37.8 (t), 47.1 (t), 63.4 (s), 148.8 (s), 149.2 (s), 157.5 (s), 173.3 (s); MS (EI) *m*/*z* (%) 325 (11) [M⁺], 308 (3), 293 (5), 279 (9), 266 (33), 252 (4), 237 (3), 220 (30), 185 (30), 167 (34), 149 (100). Anal. Calcd for C₁₄H₂₃N₅O₂S: C, 51.67; H, 7.12; N, 21.52. Found: C, 51.58; H, 7.17; N, 21.57.

4.6.15. 2-(2-Imino-4-oxo-1-thia-3-azaspiro[4.6]undec-6-yliden)-1-hydrazinecarboxamide (**160**)

Colourless powder, mp 185–187 °C; IR (Nujol) ν_{max} 3416, 3220, 3168, 1719, 1701, 1641, 1564 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.36–1.57 (m, 5H, cy), 1.81–1.90 (m, 1H, cy), 1.97–2.07 (m, 1H, cy), 2.24–2.31 (m, 1H, cy), 3.11–3.18 (m, 2H, cy), 5.67 and 6.43 (2br s, 2H, NH₂), 8.74 (s, 1H, NH), 8.96 (s, 1H, NH), 9.50 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 25.1 (t), 26.6 (t), 27.5 (t), 29.6 (t), 37.4 (t), 74.2 (s), 150.6 (s), 156.9 (s), 179.1 (s), 189.0 (s); MS (EI) m/z (%) 269 (5) [M⁺], 253 (17), 227 (66), 210 (100), 195 (100), 183 (17), 168 (35), 152 (100). Anal. Calcd for C₁₀H₁₅N₅O₂S: C, 44.60; H, 5.61; N, 26.00. Found: C, 44.53; H, 5.68; N, 26.13.

4.6.16. 2-[3-Methyl-2-(methylimino)-4-oxo-1-thia-3-azaspiro[4.6]undec-6-yliden]-1-hydrazinecarboxamide (16p)

Colourless powder, mp 199–201 °C; IR (Nujol) ν_{max} 3374, 3192, 1716, 1694, 1657, 1625 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.38–1.61 (m, 5H, cy), 1.74–1.81 (m, 1H, cy), 1.98–2.08 (m, 1H, cy), 2.28–2.40 (m, 2H, cy), 2.70–2.78 (m, 1H, cy), 3.02 (s, 3H, NCH₃), 3.06 (s, 3H, NCH₃), 5.59 and 6.45 (2br s, 2H, NH₂), 9.58 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 25.0 (t), 25.6 (t), 27.2 (t), 28.9 (q), 29.6 (t), 37.0 (q), 38.2 (t), 64.2 (s), 150.5 (s), 151.1 (s), 156.7 (s), 174.3 (s); MS (EI) *m*/*z* (%) 297 (28) [M⁺], 280 (3), 254 (3), 238 (42), 225 (4), 199 (23), 157 (100), 141 (30). Anal. Calcd for C₁₂H₁₉N₅O₂S: C, 48.47; H, 6.44; N, 23.55. Found: C, 48.55; H, 6.39; N, 23.42.

4.6.17. 2-[3-Ethyl-2-(ethylimino)-4-oxo-1-thia-3-aza-

spiro[4.6]*undec-6-yliden*]*-1-hydrazinecarboxamide* (**16***q*) Colourless powder, mp 204–207 °C; IR (Nujol) ν_{max} 3416, 3296, 3095, 1717, 1695, 1658 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.05 (t, 3H, ${}^{3}J$ =7.2 Hz, NCH₂*CH*₃), 1.14 (t, 3H, ${}^{3}J$ =7.2 Hz, NCH₂*CH*₃), 1.38–1.59 (m, 5H, cy), 1.70–1.81 (m, 1H, cy), 1.91–2.02 (m, 1H, cy), 2.27–2.38 (m, 2H, cy), 2.65–2.75 (m, 1H, cy), 3.11–3.26 (m, 2H, N*CH*₂CH₃), 3.64 (q, 2H, ${}^{3}J$ =7.2 Hz, N*CH*₂CH₃), 5.46 and 6.51 (2br s, 2H, NH₂), 9.57 (s, 1H, NH); 13 C NMR (100 MHz, DMSO- d_6) δ 12.4 (q), 15.9 (q), 25.0 (t), 25.6 (t), 27.3 (t), 29.6 (t), 36.9 (t), 37.1 (t), 46.3 (t), 63.8 (s), 148.4 (s), 150.8 (s), 156.7 (s), 174.1 (s); MS (EI) *m*/*z* (%) 325 (23) [M⁺], 282 (3), 266 (25), 227 (13), 185 (100). Anal. Calcd for C₁₄H₂₃N₅O₂S: C, 51.67; H, 7.12; N, 21.52. Found: C, 51.78; H, 7.16; N, 21.49.

4.6.18. 2-(2-Imino-4-oxo-1-thia-3-azaspiro[4.7]dodec-6-yliden)-1-hydrazinecarboxamide (**16r**)

Colourless powder, mp 218–220 °C with decomposition; IR (Nujol) ν_{max} 3404, 3162, 3114, 1719, 1701, 1663, 1592 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.04–1.13 (m, 1H, cy), 1.30–1.61 (m, 6H, cy), 1.65–1.78 (m, 1H, cy), 1.88–1.97 (m, 1H, cy), 2.53–2.61 (m, 2H, cy), 2.64–2.74 (m, 1H, cy), 5.39 and 6.39 (2br s, 2H, NH₂), 8.80 (s, 1H, NH), 8.99 (s, 1H, NH), 9.44 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 24.3 (t), 24.8 (t), 25.2 (t), 25.7 (t), 26.6 (t), 33.8 (t), 74.8 (s), 149.0 (s), 156.9 (s), 179.9 (s), 187.9 (s); MS (EI) *m*/*z* (%) 283 (14) [M⁺], 266 (8), 241 (78), 224 (53), 209 (100), 198 (28), 185 (40), 155 (35), 129 (100), 111 (67). Anal. Calcd for C₁₁H₁₇N₅O₂S: C, 46.63; H, 6.05; N, 24.72. Found: C, 46.74; H, 5.97; N, 24.65.

4.6.19. 2-[3-Methyl-2-(methylimino)-4-oxo-1-thia-3-azaspiro[4.7]dodec-6-yliden]-1-hydrazinecarboxamide (16s)

Colourless powder, mp 196–198 °C; IR (Nujol) ν_{max} 3362, 3164, 1732, 1721, 1692, 1649, 1576 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.21–1.30 (m, 1H, cy), 1.33–1.59 (m, 6H, cy), 1.92–2.01 (m, 1H, cy), 2.18–2.24 (m, 1H, cy), 2.40–2.53 (m, 2H, cy), 2.68–2.80 (m, 1H, cy), 3.02 (s, 3H, NCH₃), 3.04 (s, 3H, NCH₃), 5.68 and 6.45 (2br s, 2H, NH₂), 9.55 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 24.2 (t), 24.8 (t), 25.0 (t), 25.1 (t), 25.8 (t), 28.9 (q), 33.5 (t), 38.2 (q), 65.2 (s), 148.9 (s), 151.3 (s), 156.8 (s), 173.0 (s); MS (EI) *m*/*z* (%) 311 (7) [M⁺], 295 (3), 267 (53), 252 (100), 238 (56), 212 (43), 184 (13), 157 (85). Anal. Calcd for C₁₃H₂₁N₅O₂S: C, 50.14; H, 6.80; N, 22.49. Found: C, 50.06; H, 6.85; N, 22.58.

4.6.20. 2-[3-Ethyl-2-(ethylimino)-4-oxo-1-thia-3-azaspiro[4.7]dodec-6-yliden]-1-hydrazinecarboxamide (**16t**)

Colourless powder, mp 201–204 °C; IR (Nujol) ν_{max} 3385, 3275, 3142, 1715, 1693, 1640 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.05 (t, 3H, ³J=7.2 Hz, NCH₂ CH_3), 1.15 (t, 3H, ³J=7.2 Hz, NCH₂ CH_3), 1.16–1.23 (m, 1H, cy), 1.28–1.63 (m, 6H, cy), 1.86–1.95 (m, 1H, cy), 2.36–2.46 (m, 2H, cy), 2.71–2.83 (m, 2H, cy), 3.16–3.32 (m, 2H, NCH₂CH₃), 3.63 (q, 2H, ³J=7.2 Hz, NCH₂CH₃), 5.84 and 6.53 (2br s, 2H, NH₂), 9.54 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 12.3 (q), 15.8 (q), 24.3 (t), 24.8 (t), 24.9 (t), 25.0 (t), 25.8 (t), 33.5 (t), 36.9 (t), 46.2 (t), 64.6 (s), 148.5 (s), 149.2 (s), 156.7 (s), 172.7 (s); MS (EI) *m*/*z* (%) 339 (20) [M⁺],

322 (1), 280 (15), 256 (2), 241 (18), 213 (8), 185 (100), 157 (18). Anal. Calcd for $C_{15}H_{25}N_5O_2S$: C, 53.07; H, 7.42; N, 20.63. Found: C, 53.01; H, 7.39; N, 20.52.

4.7. General procedure for the syntheses of 3-ethyl-2-(ethylimino)-1-thia-3-azaspiro[4.5]decane-4,6-dione **17a**, 1-thia-3-azaspiro[4.6]undecan-4,6-diones **17b**,c, 3-methyl-2-(methylimino)-1-thia-3-azaspiro[4.7]dodecan-4,6-dione **17d** and 2-imino-5-(ω -carboxyalkyl)-4-thiazolidinones **18a**—i

To a magnetically stirred solution of 4-oxo-1-thia-3-azaspiro[4.4]non-6-ylidenes 16b,c (1.0 mmol) or 4-oxo-1-thia-3azaspiro[4.5]dec-6-ylidenes 16e-h.l,n (1.0 mmol) or 4-oxo-1-thia-3-azaspiro[4.6]undec-6-ylidenes 160,p (1.0 mmol) or 4-oxo-1-thia-3-azaspiro[4.7]dodec-6-ylidene 16s (1.0 mmol) in acetone-water=9:1 (30 mL) 4 equiv of Amberlyst 15H was added at room temperature. The mixture was allowed to stand at room temperature under magnetic stirring (6-15 h)until the disappearance of the reagents (monitored by TLC chromatography). The resin was removed by filtration, the reaction solvent was evaporated under reduced pressure. Then the crude was chromatographed on silica gel column (elution mixtures: ethyl acetate-cyclohexane) to obtain pure products **18a**–**f** that were crystallized from ethyl acetate–cyclohexane. In the case of the reaction of 16g along with 18e, product 17a was isolated and crystallized from ethyl acetate-cyclohexane. In the case of the reactions of 160,p and 16s only products **17b-d** were isolated. To obtain the pertinent 2-imino-5-(ω carboxyalkyl)-4-thiazolidinones 18g-i, compounds 160,p,s, or pure 17b-d were refluxed under magnetic stirring in acetone-water=9:1 (30 mL) in the presence of 4 equiv of Amberlyst 15H. At the disappearance of the reagents (4.0-9.0 h) (monitored by TLC chromatography) the resin was removed, the reaction solvent was evaporated under reduced pressure, products **18g-i** were purified by flash chromatography on a silica gel column (elution mixtures: ethyl acetate-cyclohexane) and crystallized from diethyl ether-light petroleum ether (40−60 °C).

4.7.1. 3-Ethyl-2-(ethylimino)-1-thia-3-azaspiro[4.5]decane-4,6-dione (**17a**)

Colourless powder, mp 90–92 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.19–1.26 (m, 6H, 2NCH₂*CH*₃), 1.64–1.71 (m, 1H, cy), 1.79–1.85 (m, 1H, cy), 2.00–2.10 (m, 2H, cy), 2.18–2.23 (m, 1H, cy), 2.49–2.76 (m, 3H, cy), 3.29–3.35 (m, 2H, N*CH*₂CH₃), 3.79 (q, 2H, ³*J*=7.2 Hz, N*CH*₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 12.5 (q), 15.7 (q), 22.4 (t), 25.7 (t), 29.7 (t), 38.2 (t), 38.7 (t), 47.3 (t), 65.3 (s), 147.2 (s), 171.6 (s), 202.0 (s). Its low stability does not allow a more complete characterization.

4.7.2. 2-Imino-1-thia-3-azaspiro[4.6]undecan-4,6-dione (17b)

Colourless powder, mp 112–114 °C; IR (Nujol) ν_{max} 1735, 1669, 1632 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.24–1.43 (m, 2H, cy), 1.50–1.60 (m, 1H, cy), 1.69–1.81 (m, 1H, cy), 1.95–2.13 (m, 3H, cy), 2.45–2.56 (m, 2H, cy), 2.81–2.93 (m, 1H, cy),

8.98 (s, 1H, NH), 9.21 (s, 1H, NH); 13 C NMR (DMSO- d_6) δ 25.0 (t), 27.6 (t), 29.4 (t), 35.9 (t), 42.2 (t), 78.1 (s), 180.7 (s), 186.6 (s), 206.0 (s); MS (EI) *m*/*z* (%) 212 (41) [M⁺], 184 (59), 155 (56), 150 (43), 129 (100), 109 (30). Anal. Calcd for C₉H₁₂N₂O₂S: C, 50.92; H, 5.70; N, 13.20. Found: C, 50.78; H, 5.81; N, 13.32.

4.7.3. 3-Methyl-2-(methylimino)-1-thia-3-azaspiro[4.6]undecan-4,6-dione (**17c**)

Colourless powder, mp 84–87 °C; IR (Nujol) ν_{max} 1709, 1663, 1654 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.01–1.15 (m, 1H, cy), 1.61–1.88 (m, 4H, cy), 2.03–2.17 (m, 2H, cy), 2.58–2.74 (m, 2H, cy), 2.84–2.91 (m, 1H, cy), 3.16 (s, 6H, 2NCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 25.5 (t), 26.6 (t), 26.8 (t), 30.1 (t), 35.8 (t), 38.7 (q), 42.2 (q), 68.0 (s), 151.0 (s), 172.7 (s), 204.7 (s); MS (EI) *m/z* (%) 240 (100) [M⁺], 225 (5), 212 (11), 183 (36), 167 (2), 138 (6). Anal. Calcd for C₁₁H₁₆N₂O₂S: C, 54.98; H, 6.71; N, 11.66. Found: C, 55.08; H, 6.63; N, 11.62.

4.7.4. 3-Methyl-2-(methylimino)-1-thia-3-azaspiro[4.7]dodecan-4,6-dione (17d)

Colourless powder, mp 60–62 °C; IR (Nujol) ν_{max} 1743, 1732, 1621, 1504 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.96–1.06 (m, 1H, cy), 1.45–1.53 (m, 1H, cy), 1.60–1.83 (m, 6H, cy), 1.90–1.97 (m, 1H, cy), 2.15–2.23 (m, 1H, cy), 2.43–2.49 (m, 1H, cy), 2.98–3.05 (m, 1H, cy), 3.10 (s, 3H, NCH₃), 3.18 (s, 3H, NCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 24.0 (t), 25.4 (t), 25.6 (t), 26.8 (t), 29.3 (q), 30.2 (t), 34.4 (q), 38.1 (q), 71.3 (s), 151.4 (s), 171.1 (s), 206.4 (s); MS (EI) *m/z* (%) 254 (100) [M⁺], 225 (52), 210 (2), 196 (36), 153 (42), 124 (16). Anal. Calcd for C₁₂H₁₈N₂O₂S: C, 56.67; H, 7.13; N, 11.01. Found: C, 56.72; H, 7.21; N, 11.20.

4.7.5. 4-[3-Methyl-2-(methylimino)-4-oxo-1,3-thiazolidin-5yl]butanoic acid (**18a**)

Colourless powder, mp 153–155 °C; IR (Nujol) ν_{max} 2682, 1705, 1653, 1457 cm⁻¹; ¹H NMR (CDCl₃) δ 1.68–1.89 (m, 3H, alk), 2.13–2.24 (m, 1H, alk), 2.38 (t, 2H, ³*J*=7.2 Hz, alk), 3.13 (s, 3H, NCH₃), 3.15 (s, 3H, NCH₃), 4.07 and 4.09 (2d, 1H, ³*J*=4.4 Hz, ³*J*=4.0 Hz, cy), 9.20 (br s, 1H, OH); ¹³C NMR (CDCl₃) δ 21.8 (t), 29.3 (q), 32.7 (t), 33.2 (t), 38.3 (q), 48.1 (d), 154.5 (s), 174.0 (s), 177.7 (s); MS (EI) *m*/*z* (%) 230 (31) [M⁺], 212 (100), 184 (6), 171 (1), 157 (60). Anal. Calcd for C₉H₁₄N₂O₃S: C, 46.94; H, 6.13; N, 12.16. Found: C, 46.99; H, 6.18; N, 12.04.

4.7.6. 4-[3-Ethyl-2-(ethylimino)-4-oxo-1,3-thiazolidin-5yl]butanoic acid (18b)

Colourless powder, mp 80–82 °C; IR (Nujol) ν_{max} 3119, 1704, 1649, 1459 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.12 (t, 3H, ³*J*=7.2 Hz, NCH₂*CH*₃), 1.19 (t, 3H, ³*J*=7.2 Hz, NCH₂*CH*₃), 1.61–1.84 (m, 3H, alk), 2.08–2.19 (m, 1H, alk), 2.36 (t, 2H, ³*J*=6.8 Hz, alk), 3.31 (q, 2H, ³*J*=7.2 Hz, N*CH*₂CH₃), 3.71 (q, 2H, ³*J*=7.2 Hz, N*CH*₂CH₃), 4.00 and 4.03 (2d, 1H, ³*J*=4.0 Hz, ³*J*=4.0 Hz, cy), 10.63 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 12.6 (q), 15.6 (q), 22.0

(t), 33.0 (t), 33.5 (t), 38.1 (t), 47.1 (t), 48.0 (d), 151.4 (s), 174.2 (s), 178.0 (s); MS (EI) *m*/*z* (%) 258 (90) [M⁺], 240 (31), 225 (26), 215 (20), 185 (26), 157 (100). Anal. Calcd for $C_{11}H_{18}N_2O_3S$: C, 51.14; H, 7.02; N, 10.84. Found: C, 51.05; H, 7.08; N, 10.97.

4.7.7. 5-(2-Imino-4-oxo-1,3-thiazolidin-5yl)pentanoic acid (**18c**)

Colourless powder, mp 97–100 °C; IR (Nujol) ν_{max} 3212, 2987, 3178, 1708, 1665, 1606 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.17–1.28 (m, 1H, alk), 1.35–1.54 (m, 3H, alk), 1.59–1.68 (m, 1H, alk), 1.84–2.01 (m, 1H, alk), 2.20 (t, 2H, ³J=7.2 Hz, alk), 4.21 and 4.24 (2d, 1H, ³J=4.0 Hz, ³J=3.6 Hz, cy), 8.76 (s, 1H, NH), 8.78 (s, 1H, NH), 11.80 (br s, 1H, OH); ¹³C NMR (100 MHz, DMSO- d_6) δ 24.1 (t), 26.5 (t), 32.5 (t), 33.5 (t), 56.4 (d), 174.4 (s), 181.4 (s), 189.6 (s); MS (EI) *m*/*z* (%) 216 (26) [M⁺], 200 (100), 171 (34), 143 (16), 113 (8). Anal. Calcd for C₈H₁₂N₂O₃S: C, 44.43; H, 5.59; N, 12.95. Found: C, 44.37; H, 5.58; N, 12.89.

4.7.8. 5-[3-Methyl-2-(methylimino)-4-oxo-1,3-thiazolidin-5yl]pentanoic acid (**18d**)

Colourless powder, mp 120–122 °C; IR (Nujol) ν_{max} 1739, 1718, 1638, 1459 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.22–1.30 (m, 1H, alk), 1.39–1.55 (m, 3H, alk), 1.66–1.75 (m, 1H, alk), 1.95–2.05 (m, 1H, alk), 2.19 (t, 2H, ³*J*=7.2 Hz, alk), 3.00 (s, 3H, NCH₃), 3.03 (s, 3H, NCH₃), 4.33 and 4.36 (2d, 1H, ³*J*=4.0 Hz, ³*J*=4.4 Hz, cy), 12.02 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 24.0 (t), 26.3 (t), 29.3 (q), 33.1 (t), 33.5 (t), 38.3 (q), 48.3 (d), 154.8 (s), 174.2 (s), 178.4 (s); MS (EI) *m/z* (%) 244 (35) [M⁺], 226 (100), 198 (14), 170 (9), 157 (68). Anal. Calcd for C₁₀H₁₆N₂O₃S: C, 49.16; H, 6.60; N, 11.47. Found: C, 49.23; H, 6.56; N, 11.52.

4.7.9. 5-[3-Ethyl-2-(ethylimino)-4-oxo-1,3-thiazolidin-5yl]pentanoic acid (**18e**)

Colourless powder, mp 164–166 °C; IR (Nujol) ν_{max} 3109, 1732, 1667, 1501 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.17 (t, 3H, ³*J*=7.2 Hz, NCH₂*CH*₃), 1.23 (t, 3H, ³*J*=7.2 Hz, NCH₂*CH*₃), 1.36–1.61 (m, 2H, alk), 1.70 (qui, 2H, ³*J*=7.6 Hz, alk), 1.75–1.88 (m, 1H, alk), 2.11–2.21 (m, 1H, alk), 2.38 (t, 2H, ³*J*=7.2 Hz, alk), 3.33 (q, 2H, ³*J*=7.2 Hz, N*CH*₂*CH*₃), 3.76 (q, 2H, ³*J*=7.2 Hz, N*CH*₂*CH*₃), 4.01 and 4.04 (2d, 1H, ³*J*=4.0 Hz, ³*J*=4.0 Hz, cy), 10.21 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 12.4 (q), 15.5 (q), 24.0 (t), 26.1 (t), 33.1 (t), 33.6 (t), 37.8 (t), 46.9 (t), 47.9 (d), 150.9 (s), 174.1 (s), 178.8 (s); MS (EI) *m/z* (%) 272 (100) [M⁺], 257 (26), 229 (17), 198 (5), 185 (36), 157 (43), 144 (98), 129 (56). Anal. Calcd for C₁₂H₂₀N₂O₃S: C, 52.92; H, 7.40; N, 10.29. Found: C, 52.85; H, 7.42; N, 10.34.

4.7.10. 5-(2-Imino-4-oxo-1,3-thiazolidin-5yl)-3-methylpentanoic acid (18f)

Colourless powder, mp 164–166 °C; IR (Nujol) ν_{max} 3247, 3114, 3038, 1705, 1687, 1667 cm⁻¹; ¹H NMR (400 MHz,

DMSO- d_6) δ 0.87 (d, 3H, ${}^{3}J$ =6.4 Hz, alk), 1.03–1.47 (m, 2H, alk), 1.57–1.71 (m, 1H, alk), 1.77–1.89 (m, 1H, alk), 1.90–2.07 (m, 2H, alk), 2.14–2.23 (m, 1H, alk), 4.18–4.24 (m, 1H, cy), 8.76 (s, 1H, NH), 8.95 (br s, 1H, NH), 12.01 (br s, 1H, OH); 13 C NMR (100 MHz, DMSO- d_6) δ 19.4 (q), 29.3 (t), 30.2 (d), 33.7 (t), 41.1 (t), 56.6 (d), 173.6 (s), 181.3 (s), 189.5 (s); MS (EI) *m*/*z* (%) 230 (4) [M⁺], 212 (83), 184 (53), 168 (79), 142 (79), 129 (100), 116 (100). Anal. Calcd for C₉H₁₄N₂O₃S: C, 46.94; H, 6.13; N, 12.16. Found: C, 46.98; H, 6.08; N, 12.19.

4.7.11. 5-[3-Ethyl-2-(ethylimino)-4-oxo-1,3-thiazolidin-5yl]-3-methylpentanoic acid (**18g**)

Colourless powder, mp 113–116 °C; IR (Nujol) ν_{max} 3118, 1769, 1703, 1556 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.99 (d, 3H, ³*J*=7.2 Hz, alk), 1.16 (t, 3H, ³*J*=7.2 Hz, NCH₂*CH*₃), 1.22 (t, 3H, ³*J*=7.2 Hz, NCH₂*CH*₃), 1.36–1.44 (m, 1H, alk), 1.49–1.86 (m, 2H, alk), 1.98 (oc, 1H, ³*J*=4.4 Hz, alk), 2.01–2.23 (m, 2H, alk), 2.29–2.38 (m, 1H, alk), 3.30 (q, 2H, ³*J*=7.2 Hz, N*CH*₂*CH*₃), 3.73 (q, 2H, ³*J*=7.2 Hz, N*CH*₂*CH*₃), 3.73 (q, 2H, ³*J*=7.2 Hz, N*CH*₂CH₃), 3.96–4.04 (m, 1H, cy), 9.20 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 12.4 (q), 15.5 (q), 19.4 (q), 26.8 (t), 30.1 (d), 33.4 (t), 37.8 (t), 41.2 (t), 46.9 (t), 48.2 (d), 151.0 (s), 174.1 (s), 178.2 (s); MS (EI) *m*/*z* (%) 286 (70) [M⁺], 271 (21), 243 (18), 185 (32), 157 (48), 144 (100), 129 (54). Anal. Calcd for C₁₃H₂₂N₂O₃S: C, 54.52; H, 7.74; N, 9.78. Found: C, 54.64; H, 7.83; N, 9.84.

4.7.12. 6-(2-Imino-4-oxo-1,3-thiazolidin-5yl)hexanoic acid (**18h**)

Colourless powder, mp 106–109 °C; IR (Nujol) ν_{max} 3243, 3177, 3092, 1713, 1674, 1611 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.13–1.47 (m, 6H, alk), 1.55–1.68 (m, 1H, alk), 1.91–2.00 (m, 1H, alk), 2.15–2.31 (m, 2H, alk), 4.19 and 4.21 (2d, 1H, ³*J*=4.0 Hz, ³*J*=4.0 Hz, cy), 8.74 (s, 1H, NH), 8.94 (br s, 1H, NH), 11.98 (br s, 1H, OH); ¹³C NMR (100 MHz, DMSO- d_6) δ 21.4 (t), 22.5 (t), 24.1 (t), 28.9 (t), 32.8 (t), 53.6 (d), 152.6 (s), 176.8 (s), 180.0 (s); MS (EI) *m*/*z* (%) 230 (100) [M⁺], 213 (63), 185 (31), 143 (14), 114 (4). Anal. Calcd for C₉H₁₄N₂O₃S: C, 46.94; H, 6.13; N, 12.16. Found: C, 47.02; H, 6.02; N, 12.04.

4.7.13. 6-[3-Methyl-2-(methylimino)-4-oxo-1,3-thiazolidin-5yl]hexanoic acid (18i)

Colourless powder, mp 93–95 °C; IR (Nujol) ν_{max} 1725, 1712, 1626, 1479 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.32–1.51 (m, 4H, alk), 1.57–1.68 (m, 2H, alk), 1.72–1.80 (m, 1H, alk), 2.06–2.18 (m, 1H, alk), 2.32 (t, 2H, ³*J*=7.2 Hz, alk), 3.11 (s, 3H, NCH₃), 3.13 (s, 3H, NCH₃), 4.03 and 4.05 (2d, 1H, ³*J*=4.0 Hz, ³*J*=4.0 Hz, cy), 10.53 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 24.3 (t), 26.4 (t), 28.3 (t), 29.1 (q), 33.1 (t), 33.7 (t), 38.3 (q), 48.4 (d), 154.5 (s), 174.3 (s), 178.7 (s); MS (EI) *m/z* (%) 258 (100) [M⁺], 241 (34), 214 (85), 185 (37), 156 (28). Anal. Calcd for C₁₁H₁₈N₂O₃S: C, 51.14; H, 7.02; N, 10.84. Found: C, 51.04; H, 7.13; N, 10.72.

4.7.14. 7-[3-Methyl-2-(methylimino)-4-oxo-1,3-thiazolidin-5yl]heptanoic acid (**18***j*)

Colourless powder, mp 116–118 °C; IR (Nujol) ν_{max} 1743, 1732, 1621, 1504 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.12–1.38 (m, 4H, alk), 1.51–1.72 (m, 3H, alk), 1.83–1.89 (m, 2H, alk), 2.18–2.29 (m, 1H, alk), 2.36 (t, 2H, ³*J*=7.2 Hz, alk), 3.11 (s, 3H, NCH₃), 3.13 (s, 3H, NCH₃), 4.19 and 4.21 (2d, 1H, ³*J*=4.0 Hz, ³*J*=4.0 Hz, cy), 10.72 (br s, 1H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 24.0 (t), 26.1 (t), 27.5 (t), 28.5 (t), 29.7 (q), 33.4 (t), 33.9 (t), 38.8 (q), 48.6 (d), 157.8 (s), 169.0 (s), 176.4 (s); MS (EI) *m*/*z* (%) 272 (65) [M⁺], 255 (17), 227 (100), 198 (53), 157 (21), 127 (6). Anal. Calcd for C₁₂H₂₀N₂O₃S: C, 52.92; H, 7.40; N, 10.29. Found: C, 52.81; H, 7.53; N, 10.42.

4.8. General procedure for the syntheses of 2-(1,4,5,6tetrahydropyrimidin-2-ylthio)cyclohexan-1-one N-phenylsemicarbazone **20a**, 5',6'-dihydro-2Hspiro[cycloalkane-1,2'-imidazo[2,1-b][1,3]thiazole]-2,3'dione 2-semicarbazones **21a**,c f and 6',7'-dihydro-2H,5'Hspiro[cycloalkane-1,2'-[1,3]thiazolo[3,2-a]pyrimidine]-2,3'dione 2-semicarbazones **21b**,d,e,g

Cycloalkenyl-1-diazenes 5a,c,g-i (1.0 mmol) were added at room temperature to a magnetically stirred solution of imidazolidine-2-thione **19a** or tetrahydropyrimidine-2-thione **19b** (1.0 mmol) in methanol (4 mL) at room temperature. The reaction was allowed to stand under magnetic stirring at room temperature (0.1–1.5 h) until the disappearance of the reagents (monitored by TLC chromatography). Then, the reaction solvent was evaporated under reduced pressure and the final product **20a** was purified by chromatography on silica gel column (elution mixtures: ethyl acetate–cyclohexane) and crystallized from ethyl acetate–cyclohexane. Compounds **21a–g** crystallized directly from the reaction medium and were collected as pure products by filtration.

4.8.1. 2-(1,4,5,6-Tetrahydropyrimidin-2-ylthio)cyclohexan-1-one N-phenylsemicarbazone (**20a**)

Colourless powder, mp 181–184 °C; IR (Nujol) ν_{max} 3388, 3195, 1691, 1686, 1586 cm⁻¹; ¹H NMR (400 MHz, DMSOd₆) δ 1.29–1.37 (m, 1H, cy), 1.52–1.57 (m, 1H, cy), 1.79– 1.94 (m, 7H, cy), 2.99–3.03 (m, 1H, cy), 3.10–3.23 (m, 2H, NCH₂), 3.40–3.45 (m, 2H, NCH₂), 5.96–6.00 (m, 1H, cy), 7.00 (t, 1H, ³*J*=7.2 Hz, Ar), 7.31 (t, 2H, ³*J*=8.0 Hz, Ar), 7.45 (d, 2H, ³*J*=8.0 Hz, Ar), 8.14 (s, 1H, NH), 8.31 (s, 1H, NH), 9.82 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆) δ 20.8 (t), 24.1 (t), 24.3 (t), 26.4 (t), 29.3 (t), 40.3 (t), 42.4 (t), 62.1 (d), 118.1 (d), 122.2 (d), 128.9 (d), 138.9 (d), 149.8 (s), 153.3 (s), 177.5 (s); MS (EI) *m/z* (%) 345 (18) [M⁺], 268 (11), 230 (100), 213 (7), 186 (12), 172 (17). Anal. Calcd for C₁₇H₂₃N₅OS: C, 59.10; H, 6.71; N, 20.27. Found: C, 59.01; H, 6.78; N, 20.35.

4.8.2. 5',6'-Dihydro-2H-spiro[cyclopentane-1,2'-imid-

azo[2,1-*b*][1,3]*thiazole*]-2,3'-*dione* 2-*semicarbazone* (**21***a*) Colourless powder, mp 182–183 °C; IR (Nujol) ν_{max} 3446, 3254, 3172, 1709, 1645, 1602 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.60–1.72 (m, 1H, cy), 1.92–2.03 (m, 1H, cy), 2.19–2.30 (m, 2H, cy), 2.36–2.45 (m, 2H, cy), 3.55–3.71 (m, 2H, NCH₂), 4.14 (t, 2H, ³*J*=8.0 Hz, NCH₂), 6.20 (br s, 2H, NH₂), 9.28 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 22.4 (t), 27.6 (t), 29.5 (t), 41.6 (t), 60.7 (t), 71.6 (s), 154.9 (s), 156.5 (s), 158.1 (s), 167.2 (s); MS (EI) *mlz* (%) 268 (2) [M⁺+1], 267 (11) [M⁺], 250 (7), 224 (8), 208 (4), 195 (100), 181 (3), 168 (32), 155 (89), 139 (10), 127 (36), 102 (51). Anal. Calcd for C₁₀H₁₃N₅O₂S: C, 44.93; H, 4.90; N, 26.20. Found: C, 44.86; H, 4.95; N, 26.12.

4.8.3. 6',7'-Dihydro-2H,5'H-spiro[cyclopentane-1,2'-[1,3]thiazolo[3,2-a]pyrimidine]-2,3'-dione 2semicarbazone (**21b**)

Colourless powder, mp 218–220 °C; IR (Nujol) ν_{max} 3452, 3283, 3180, 3131, 1717, 1690, 1637 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.67–1.84 (m, 3H, cy), 2.02–2.10 (m, 1H, cy), 2.14–2.19 (m, 1H, cy), 2.30–2.47 (m, 3H, cy), 3.39–3.46 (m, 2H, NCH₂), 3.47–3.65 (m, 2H, NCH₂), 6.18 (br s, 2H, NH₂), 9.29 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 19.0 (t), 22.5 (t), 27.7 (t), 40.5 (t), 45.9 (t), 61.4 (s), 149.3 (s), 155.7 (s), 156.4 (s), 172.5 (s); MS (EI) *m/z* (%) 281 (14) [M⁺], 264 (8), 237 (11), 221 (100), 209 (78), 197 (35), 181 (26), 167 (47), 154 (29), 143 (8), 114 (25). Anal. Calcd for C₁₁H₁₅N₅O₂S: C, 49.96; H, 5.37; N, 24.89. Found: C, 50.02; H, 5.29; N, 24.97.

4.8.4. 5',6'-Dihydro-2H-spiro[cyclohexane-1,2'-imidazo[2,1-b][1,3]thiazole]-2,3'-dione 2-semicarbazone (**21c**)

Colourless powder, mp 163–166 °C; IR (Nujol) ν_{max} 3416, 3339, 3125, 1716, 1695 cm⁻¹; ¹H NMR (DMSO- d_6) δ 1.34–1.47 (m, 2H, cy), 1.72–1.82 (m, 1H, cy), 1.85–1.96 (m, 2H, cy), 2.20–2.32 (m, 2H, cy), 3.02 (d, 1H, ³*J*=15.2 Hz, cy), 3.64–3.80 (m, 2H, NCH₂), 4.18 (t, 2H, ³*J*=9.2 Hz, NCH₂), 5.80 and 6.36 (2br s, 2H, NH₂), 9.60 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 22.0 (t), 23.5 (t), 23.9 (t), 36.8 (t), 41.5 (t), 60.4 (t), 73.0 (s), 147.7 (s), 156.8 (s), 157.5 (s), 166.3 (s); MS (EI) *m*/*z* (%) 281 (3) [M⁺], 264 (2), 238 (22), 222 (19), 209 (100), 181 (31), 155 (86), 138 (34). Anal. Calcd for C₁₁H₁₅N₅O₂S: C, 49.96; H, 5.37; N, 24.89. Found: C, 49.86; H, 5.42; N, 24.92.

4.8.5. 6',7'-Dihydro-2H,5'H-spiro[cyclohexane-1,2'-[1,3]thiazolo[3,2-a]pyrimidine]-2,3'-dione 2-semicarbazone (**21d**)

Colourless powder, mp 212–213 °C; IR (Nujol) ν_{max} 3461, 3184, 3147, 1722, 1699, 1656 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.18–1.31 (m, 2H, cy), 1.77–1.87 (m, 5H, cy), 2.00–2.07 (m, 1H, cy), 2.26–2.32 (m, 1H, cy), 2.96–3.02 (m, 1H, cy), 3.40–3.45 (m, 2H), 3.56–3.65 (m, 2H), 5.16 and 6.35 (2br s, 2H, NH₂), 9.57 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 19.1 (t), 22.4 (t), 23.7 (t), 24.1 (t), 40.3 (t), 46.0 (t), 62.2 (s), 148.6 (s), 149.0 (s), 156.9 (s), 171.7 (s); MS (EI) *m*/*z* (%) 295 (8) [M⁺], 278 (3), 251 (17), 235 (154), 223 (100), 195 (17), 182 (28), 167 (40), 154 (15), 142 (52), 113 (36). Anal. Calcd for C₁₂H₁₇N₅O₂S: C, 48.80; H, 5.80; N, 23.71. Found: C, 48.90; H, 5.83; N, 23.72.

4.8.6. 6',7'-Dihydro-2H,5'H-spiro[cycloheptane-1,2'-[1,3]thiazolo[3,2-a]pyrimidine]-2,3'-dione 2-semicarbazone (**21e**)

Colourless powder, mp 198–201 °C; IR (Nujol) ν_{max} 3432, 3179, 3162, 1732, 1705, 1672 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.36–1.80 (m, 8H, cy), 1.97–2.03 (m, 1H, cy), 2.28–2.39 (m, 2H, cy), 2.69–2.74 (m, 1H, cy), 3.36–3.43 (m, 2H, NCH₂), 3.46–3.60 (m, 2H, NCH₂), 5.61 and 6.14 (2br s, 2H, NH₂), 9.55 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 19.1 (t), 25.0 (t), 25.7 (t), 27.2 (t), 29.6 (t), 36.5 (t), 45.9 (t), 62.8 (s), 148.9 (s), 150.9 (s), 156.7 (s), 173.0 (s); MS (EI) *m*/*z* (%) 309 (4) [M⁺], 293 (7), 265 (17), 249 (38), 236 (100), 209 (37), 195 (38), 181 (64), 168 (52), 154 (68), 143 (42), 114 (59). Anal. Calcd for C₁₃H₁₉N₅O₂S: C, 50.47; H, 6.19; N, 22.64. Found: C, 50.52; H, 6.14; N, 22.59.

4.8.7. 5',6'-Dihydro-2H-spiro[cyclooctane-1,2'-imidazo[2,1-b][1,3]thiazole]-2,3'-dione 2-semicarbazone (21f)

Colourless powder, mp 170–173 °C; IR (Nujol) ν_{max} 3459, 3277, 3193, 3156, 1713, 1633, 1596 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.17–1.55 (m, 8H, cy), 2.26–2.32 (m, 1H, cy), 2.42–2.48 (m, 1H, cy), 2.52–2.58 (m, 1H, cy), 2.70–2.76 (m, 1H, cy), 3.64 (t, 2H, ³*J*=8.2 Hz, NCH₂), 4.12 (t, 2H, ³*J*=8.2 Hz, NCH₂), 5.87 and 6.40 (2br s, 2H, NH₂), 9.57 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 24.2 (t), 24.6 (t), 24.9 (t), 25.6 (t), 33.7 (t), 40.1 (t), 41.5 (t), 60.3 (t), 74.7 (s), 148.6 (s), 156.8 (s), 157.4 (s), 166.7 (s); MS (EI) *m*/*z* (%) 309 (2) [M⁺], 292 (2), 266 (18), 250 (18), 237 (100), 224 (3), 209 (54), 196 (67), 182 (37), 154 (25), 142 (58), 114 (93). Anal. Calcd for C₁₃H₁₉N₅O₂S: C, 50.47; H, 6.19; N, 22.64. Found: C, 50.40; H, 6.11; N, 22.69.

4.8.8. 6',7'-Dihydro-2H,5'H-spiro[cyclooctane-1,2'-[1,3]thiazolo[3,2-a]pyrimidine]-2,3'-dione 2-semicarbazone (**21g**)

Colourless powder, mp 190–193 °C with decomposition; IR (Nujol) ν_{max} 3463, 3307, 3165, 3146, 1732, 1711, 1658 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 1.23–1.38 (m, 1H, cy), 1.63 (m, 5H, cy), 1.66–1.80 (m, 1H, cy), 1.82–1.90 (m, 1H, cy), 2.19–2.24 (m, 1H, cy), 2.40–2.48 (m, 2H, cy), 2.73–2.79 (m, 1H, cy), 3.16–3.21 (m, 2H, cy), 3.35–3.42 (m, 2H, NCH₂), 3.56 (t, 2H, ³*J*=6.0 Hz, NCH₂), 5.78 and 6.47 (2br s, 2H, NH₂), 9.55 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO- d_6) δ 19.0 (t), 24.3 (t), 24.8 (t), 24.9 (t), 25.0 (t), 25.7 (t), 33.3 (t), 40.2 (t), 45.8 (t), 63.7 (s), 149.0 (s), 149.2 (s), 156.8 (s), 171.8 (s); MS (EI) *m/z* (%) 323 (6) [M⁺], 306 (10), 279 (21), 264 (16), 251 (100), 225 (35), 210 (65), 196 (36), 184 (23), 172 (4), 159 (14), 119 (73). Anal. Calcd for C₁₄H₂₁N₅O₂S: C, 51.99; H, 6.54; N, 21.65. Found: C, 52.10; H, 6.46; N, 21.57.

4.9. General procedure for the synthesis of 2-[hexahydro-1,3benzothiazol-3a(4H)-yl]-N-phenylhydrazinecarboxamides 23a,b

To a magnetically stirred solution of N,N'-dialkylthioureas **14b,c** (1.0 mmol) in methanol (5 mL) at room temperature N1-phenyl-2-(1-cyclohexenyl)-1-diazene-1-carboxyamide **5i** (1.0 mmol) was added. The reaction was allowed to stand under magnetic stirring at room temperature (1.5-3.0 h) until the disappearance of the reagents (monitored by TLC chromatography). Then, the reaction solvent was evaporated under reduced pressure and the final products **23a,b** were purified by chromatography on silica gel column (elution mixtures: ethyl acetate-cyclohexane) and crystallized from ethyl acetatecyclohexane.

4.9.1. 2-[3-Methyl-2-(methylimino)hexahydro-1,3-benzothiazol-3a(4H)-yl]-N-phenylhydrazinecarboxamide (**23a**)

Colourless powder, mp 137–139 °C; IR (Nujol) ν_{max} 3491, 3304, 3259, 1716, 1666, 1620, 1580 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.36–1.47 (m, 3H, cy), 1.60–1.69 (m, 2H, cy), 1.78–1.85 (m, 1H, cy), 2.00–2.06 (m, 2H, cy), 2.87 (s, 3H, NCH₃), 3.07 (s, 3H, NCH₃), 3.58–3.65 (m, 1H, cy), 4.29 (br s, 1H, NH), 6.52 (br s, 1H, NH), 7.05 (dt, 1H, ³*J*=7.2 Hz, ⁴*J*=0.8 Hz, Ar), 7.29 (t, 2H, ³*J*=7.6 Hz, Ar), 7.46 (d, 2H, ³*J*=8.4 Hz, Ar), 8.16 (br s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 21.3 (t), 23.0 (t), 28.7 (t), 31.2 (t), 31.3 (q), 40.1 (q), 44.8 (d), 82.0 (s), 118.8 (d), 123.1 (d), 129.0 (d), 138.1 (s), 155.4 (s), 157.2 (s); MS (EI) *m/z* (%) 333 (2) [M⁺], 241 (18), 212 (31), 184 (47), 169 (21), 155 (100), 140 (5), 112 (64). Anal. Calcd for C₁₆H₂₃N₅OS: C, 57.63; H, 6.95; N, 21.00. Found: C, 57.73; H, 7.01; N, 20.96.

4.9.2. 2-[3-Ethyl-2-(ethylimino)hexahydro-1,3-benzothiazol-3a(4H)-yl]-N-phenylhydrazinecarboxamide (**23b**)

Colourless powder, mp 146–150 °C; IR (Nujol) v_{max} 3356, 3295, 3225, 1673, 1625 cm⁻¹; ¹H NMR (400 MHz, DMSOd₆) δ 1.04-1.12 (m, 6H, 2NCH₂CH₃), 1.31-1.40 (m, 2H, cy), 1.45-1.58 (m, 3H, cy), 1.71-1.75 (m, 1H, cy), 1.81-1.87 (m, 1H, cy), 2.02-2.07 (m, 1H, cy), 3.06-3.10 (m, 2H, NCH₂CH₃), 3.11-3.20 and 3.22-3.35 (2 m, 2H, NCH₂CH₃), 3.57 (t, 1H, ${}^{3}J=5.2$ Hz, cy), 5.37 (s, 1H, NH), 6.93 (t, 1H, ${}^{3}J=6.8$ Hz, Ar), 7.26 (t, 2H, ${}^{3}J=6.8$ Hz, Ar), 7.36 (br s, 1H, NH), 7.45 (d, 2H, ${}^{3}J=7.6$ Hz, Ar), 8.54 (br s, 1H, NH); ${}^{13}C$ NMR (100 MHz, DMSO- d_6) δ 14.2 (q), 16.8 (q), 21.3 (t), 21.9 (t), 29.4 (t), 37.1 (t), 43. 9 (d), 47.9 (t), 81.4 (s), 118.1 (d), 121.7 (d), 128.6 (d), 139.4 (s), 154.5 (s), 156.5 (s); MS (EI) m/z (%) 362 (1) [M⁺+1], 339 (1), 261 (7), 246 (9), 229 (27), 211 (7), 175 (11), 132 (17), 119 (41), 110 (100). Anal. Calcd for C₁₈H₂₇N₅OS: C, 59.80; H, 7.53; N, 19.37. Found: C, 59.67; H, 7.82; N, 19.52.

Acknowledgements

The authors thank MIUR (Roma) [PRIN 2005 (2005034305)] and the Università degli Studi di Urbino for the financial support of these investigations. They also thank Dr. Stefano Beretta and Mr. Benoit Caprin for their precious collaboration in the synthetic development of the work.

References and notes

 (a) Schieberle, P.; Güntert, M.; Sommer, H.; Werkhoff, P. Food Chem.
 1983, 56, 369–372; (b) Mac Leod, G.; Ames, J. J. Food Sci. 1987, 52, 42–46; (c) Mac Leod, G.; Ames, J. Flavour Frag. J. 1986, 1, 91–107; (d) Elmore, S.; Mottram, D. J. J. Agric. Food Chem. **1997**, 45, 3603–3607; (e) Ong, P.; Acree, T. J. Agric. Food Chem. **1998**, 46, 2282–2286.

- (a) Hartman, G.; Jin, Q. Z.; Collins, G.; Lee, K.; Ho, C. T.; Chang, S. J. J. Agric. Food Chem. **1983**, *31*, 1030–1033; (b) Bultery, R.; Stean, D.; Ling, L. J. Agric. Food Chem. **1994**, *42*, 791–795; (c) Pattenden, G.; Mulqueen, B.; Falck, J. Tetrahedron Lett. **1994**, *35*, 5705–5708; (d) Fuganti, C.; Gatti, F. G.; Serra, S. Tetrahedron **2007**, *63*, 4762–4767.
- (a) Hayashi, K.; Sato, C.; Hiki, S.; Kumagai, T.; Tamai, S.; Abe, T.; Nagao, Y. *Tetrahedron Lett.* **1999**, *40*, 3761–3764; (b) Ino, A.; Murabayashi, A. *Tetrahedron* **1999**, *55*, 10271–10282; (c) Higashibayashi, S.; Kohno, M.; Goto, T.; Suzuki, K.; Mori, T.; Hashimoto, K.; Nakata, M. *Tetrahedron Lett.* **2004**, *45*, 3707–3712; (d) Mori, T.; Higashibayashi, S.; Goto, T.; Kohno, M.; Satouchi, Y.; Shinko, K.; Suzuki, K.; Suzuki, S.; Tohmiya, H.; Hashimoto, K.; Nakata, M. *Tetrahedron Lett.* **2007**, *48*, 1331–1335.
- (a) Caujolee, R.; Baziard-Mouysset, G.; Favrot, J. D.; Payard, M.; Louiseau, P. R.; Amarouch, H.; Linas, M. D.; Seguela, J. P.; Louiseau, P. M.; Bories, C.; Gayral, P. J. Med. Chem. 1993, 28, 29–35.
- (a) Chaviara, A. T.; Christidis, P. C.; Papageorgiou, A.; Chrysogelou, E.; Hadjipavlou-Litina, D. J.; Bolos, C. A. J. Inorg. Biochem. 2005, 99, 2102–2109; (b) Rostom, S. A. F. Bioorg. Med. Chem. 2006, 14, 6475–6485.
- (a) Davidson, B. S. Chem. Rev. **1993**, *93*, 1771–1791;
 (b) Michael, J. P.; Pattenden, G. Angew. Chem., Int. Ed. Engl. **1993**, *32*, 1–23;
 (c) Gu, X.-H.; Wan, X.-Z.; Jiang, B. Bioorg. Med. Chem. Lett. **1999**, *9*, 569–572.
- (a) Kearney, P. C.; Fernandez, M.; Flygare, J. A. J. Org. Chem. 1988, 63, 196–200; (b) Reid, C. W.; Blackburn, N. T.; Legaree, B. A.; Auzanneau, F.; Clarke, A. J. FEBS Lett. 2004, 574, 73–79; (c) Bonde, C. G.; Gaikwad, N. J. Bioorg. Med. Chem. 2004, 12, 2151–2161; Ritter, T. K.; Wong, C. H. Tetrahedron Lett. 2001, 42, 615–618; (d) Kim, S. K.; Son, H.; Nam, G.; Chi, D. Y.; Kim, J. H. Bioorg. Med. Chem. 2000, 10, 1143–1145.
- Brown, R. S.; Dowden, J.; Moreau, C.; Potter, V. L. *Tetrahedron Lett.* 2002, 43, 6561–6562; (b) Mulqueen, G.; Pattenden, G.; Whiting, D. *Tetrahedron* 1993, 49, 5359–5364.
- 9. Vorbrügen, H.; Krolikiewick, K. Tetrahedron 1993, 49, 9353-9372.
- Busacca, C.; Dong, Y.; Spinelli, E. *Tetrahedron Lett.* **1996**, *37*, 2935–2938.
- Galèotti, N.; Montagne, C.; Pioncet, J.; Join, P. *Tetrahedron Lett.* 1992, 33, 2807–2810.
- (a) Wipf, P.; Fritc, P. *Tetrahedron Lett.* **1994**, *35*, 5397–5400; (b) Muir,
 J. C.; Pattenden, G.; Ye, T. *Tetrahedron Lett.* **1998**, *39*, 2861–2864; (c) Ino, A.; Murabayashi, A. *Tetrahedron* **2001**, *57*, 1897–1902.
- Aitken, R. A.; Armstrong, D. P.; Galt, R. H. B.; Mesher, S. T. E. J. Chem. Soc., Perkin Trans. 1 1997, 935–942.
- (a) Tárraga, A.; Molina, P.; Curiel, D.; Bautista, D. Tetrahedron: Asymmetry 2002, 13, 1621–1628; Knapp, S.; Yang, C.; Haimowitz, T. Tetrahedron Lett. 2002, 43, 7101–7104; (b) Bernardi, L.; Bovini, B. F.; Comes-Franchini, M.; Femoni, C.; Fochi, M.; Ricci, A. Tetrahedron: Asymmetry 2004, 15, 1133–1140; (c) Lu, S.-F.; Du, D.-M.; Zhang, S.-W.; Xu, J. Tetrahedron: Asymmetry 2004, 15, 3433–3441.
- Abdel-Jalil, R. J.; Saeed, M.; Voelter, W. Tetrahedron Lett. 2001, 42, 2435–2437.
- Tiecco, M.; Testaferri, L.; Santi, C.; Tomassini, C.; Marini, F.; Bagnoli, L.; Temperini, A. *Tetrahedron: Asymmetry* 2002, *13*, 429–435.
- (a) Attanasi, O. A.; De Crescentini, L.; Foresti, E.; Galarini, R.; Santeusanio, S.; Serra Zanetti, F. *Synthesis* **1995**, 1397–1400; (b) Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Lillini, S.; Mantellini, F.; Santeusanio, S. *Org. Lett.* **2005**, *7*, 2469–2471.
- Attanasi, O. A.; Filippone, P.; Foresti, E.; Guidi, B.; Santeusanio, S. *Tetrahedron* 1999, 55, 13423–13444.
- Attanasi, O. A.; Berretta, S.; De Crescentini, L.; Favi, G.; Filippone, P.; Giorgi, G.; Lillini, S.; Mantellini, F. *Tetrahedron Lett.* 2007, 48, 2449–2451.
- Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–2021.
- Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Golobič, A.; Lillini, S.; Mantellini, F. Synlett 2006, 2735–2738.
- 22. Crystallographic data for compound **9k** (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 636093. Copies of the data

can be obtained free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033 or e-mail: deposit@ccdc.cam.ac.uk].

- 23. Ballini, R.; Petrini, M. J. Chem. Soc., Perkin Trans. 1 1988, 2563-2565.
- (a) Eison, M. S.; Taylor, D. P.; Riblet, L. A.; Temple, D. L., Jr. J. Med. Chem. 1986, 29, 359–369; (b) New, J. S.; Yevich, J. P.; Temple, D. L., Jr.; New, K. B.; Gross, S. M.; Schlemmer, R. F., Jr.; Eison, M. S.; Taylor, D. P.; Riblet, L. A. J. Med. Chem. 1988, 31, 618–624; (c) New, J. S.; Christopher, W. L.; Yevich, J. P.; Butler, R.; Schlemmer, R. F., Jr.; Vander-Maelen, C. P.; Cipollina, J. A. J. Med. Chem. 1996, 32, 1147–1156; (d) Hrib, N. J.; Jurcak, J. G.; Bregna, D. E.; Burgher, K. L.; Hartman, H. B.; Kafka, S.; Kerman, L. L.; Konsamut, S.; Roehr, J.; Szewczak,

M. R.; Woods-Kettelberger, A. T.; Corbett, R. J. Med. Chem. 1996, 39, 4044-4057.

- (a) Solankee, A.; Kapadia, K.; Turel, J. J. Inst. Chem. 1993, 65, 140; (b) Solankee, A.; Kapadia, K.; Turel, J. Asian J. Chem. 1994, 6, 169–171; (c) Solankee, A.; Kapadia, K.; Turel, J. J. Indian Chem. Soc. 1995, 72, 739–740.
- 26. Crystallographic data for compound 18d (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 636093. Copies of the data can be obtained free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033 or e-mail: deposit@ccdc.cam.ac.uk].